A new formulation for the unassigned distance geometry problem

Gabriel Braun (UFRJ), Nelson Maculan (UFRJ), Renan Vicente Pinto (UFRRJ), Carlile Lavor (UNICAMP), Felipe França (UFRJ)

August 09, 2023

Abstract

A new formulation is proposed to solve the unassigned distance geometry problem.

1 Introduction

The unassigned distance geometry problem ($U D G P$) was defined in [1] and mathematical optimization formulations and heuristis for solving ($U D G P$) are presented in [2]. Changing the objective function of the proposed formulations in [2], we obtained two new formulations, which will be presented in this work.

2 A formulation presented in [2]

With each vertex v_{i} it is associated $x_{i}=\left(x_{i, 1} x_{i, 2} x_{i, 3}\right)^{\top} \in R^{3}, i=1,2, \ldots, n$.
Let the distances $d_{k}>0, k=1,2, \ldots, m$ be given.
Each d_{k} is associated with two different vertices $v_{i}, v_{j}, i<j$, but we don't know which ones.

Let $\left\|x_{i}-x_{j}\right\|_{2}=\sqrt{\sum_{l=1}^{3}\left(x_{i, l}-x_{j, l}\right)^{2}}, i \neq j$.
The formulations presented in [2]:

$$
\begin{equation*}
\left(P_{0}\right): \min \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\sum_{k=1}^{m} a_{i j}^{k}\left(\left\|x_{i}-x_{j}\right\|_{2}^{2}-d_{k}^{2}\right)^{2}\right), \tag{1}
\end{equation*}
$$

subject to:

$$
\begin{equation*}
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i j}^{k}=1, k=1,2, \ldots m, \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{k=1}^{m} a_{i j}^{k} \leq 1, \quad i=1,2, \ldots, n-1, \quad j=i+1, i+2, \ldots, n \tag{3}\\
a_{i j}^{k} \in\{0,1\}, k=1,2, \ldots, m, i=1,2, . ., n-1, j=i+1, \ldots, n, \tag{4}\\
x_{i} \in R^{3}, i=1,2, \ldots, n \tag{5}
\end{gather*}
$$

Where the binary variable $a_{i j}^{k}=1$ if the distance d_{k} is assigned to the pair $\left(v_{i}, v_{j}\right)$, and $a_{i j}^{k}=0$ otherwise.

3 A new formulation

We propose the following formulation:

$$
\begin{equation*}
\left(P_{1}\right): \min \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\sum_{k=1}^{m} a_{i j}^{k}\left|\left\|x_{i}-x_{j}\right\|_{2}-d_{k}\right|\right), \tag{6}
\end{equation*}
$$

subject to: $(2-5)$.
We will write $\left(P_{1}\right)$ in another form.

$$
\begin{equation*}
(P): \min \sum_{k=1}^{m} y_{k} \tag{7}
\end{equation*}
$$

subject to (2-5), and

$$
\begin{gather*}
y_{k} \geq \alpha_{k}, \quad y_{k} \geq-\alpha_{k}, \quad k=1,2, \ldots, m, \tag{8}\\
t_{i j} \geq 0, \quad t_{i j}^{2}=\sum_{l=1}^{3}\left(x_{i, l}-x_{j, l}\right)^{2}, i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n, \tag{9}\\
-\left(1-a_{i j}^{k}\right) M+t_{i j} \leq z_{i j k} \leq t_{i j}+\left(1-a_{i j}^{k}\right) M . i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n, k=1,2, \ldots, m, \\
-a_{i j}^{k} M \leq z_{i j k} \leq a_{i j}^{k} M, i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n, k=1,2, \ldots, m, \\
-\left(1-a_{i j}^{k}\right) M+\left(d_{k}+\alpha_{k}\right) \leq z_{i j k} \leq\left(d_{k}+\alpha_{k}\right)+\left(1-a_{i j}^{k}\right) M . i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n, k=1,2, \ldots, m, \tag{11}\\
\alpha_{k} \in R, y_{k} \geq 0, \quad k=1,2, \ldots, m, \tag{12}\\
z_{i j k} \geq 0, i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n, k=1,2, \ldots, m, \tag{13}
\end{gather*}
$$

Where:

$$
M>\max _{k=1,2, \ldots, m}\left\{d_{k}\right\}
$$

In (7), we minimize $\sum_{k=1}^{m}\left|\alpha_{k}\right|$.

If $\operatorname{val}(P)=0$ we obtain a feasible solution.
($\operatorname{val}($.$) is the optimum value of the objective function of problem (.)).$
We can consider $x_{1}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{\top}$.

3.1 New ideas

Unfortunately the continuous relaxation of (P) is not convex. Therefore, we will propose a modified model.

$$
\begin{equation*}
(P P): \min \sum_{k=1}^{m} y_{k}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left[t_{i j}^{2}-\sum_{l=1}^{3}\left(x_{i, l}-x_{j, l}\right)^{2}\right] \tag{15}
\end{equation*}
$$

subject to $(2-8),(10-14)$, and we replace (9) by :

$$
\begin{equation*}
t_{i j} \geq 0, \quad t_{i j}^{2} \geq \sum_{l=1}^{3}\left(x_{i, l}-x_{j, l}\right)^{2}, i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n \tag{16}
\end{equation*}
$$

The continuous relaxation of $(P P)$ has a non-convex objective function, and its set of constraints convex.

From (16) we can say that any local optimum of $(P P)$ will imply

$$
\begin{equation*}
t_{i j}^{2}=\sum_{l=1}^{3}\left(x_{i, l}-x_{j, l}\right)^{2}, i=1,2, \ldots, n-1, j=i+1, i+2, \ldots, n \tag{17}
\end{equation*}
$$

References

[1] P. Duxbury, L. Granlund, S. R. Gujarathi, P. Juhas, and S. J. L. Billinge. The unassigned distance geometry problem. Discrete Applied Mathematics, 204:117-132, 2016.
[2] P. Duxbury, C. Lavor, L. Liberti, and L.L. de Salles-Neto. Unassigned distance geometry and molecular conformation problems. Journal of Global Optimization, 83:73-82, 2022.

