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O clustering de rede aborda o problema de identificação de conjuntos de nós (co-
munidades) que possuem padrões de conexão semelhantes. No entanto, em muitos
cenários, os nós também têm atributos que geralmente estão correlacionados com a
estrutura de cluster. Assim, as informações da rede (arestas) e informações do nó
(atributos) podem ser aproveitados em conjunto para projetar algoritmos de cluste-
ring de alto desempenho. Sob um modelo geral para a rede e atributos do nó, este
trabalho apresenta um algoritmo de clustering iterativo que maximiza a verossimi-
lhança conjunta, assumindo que a distribuição de probabilidade das interações na
rede e os atributos dos nós pertencem a famílias exponenciais. Este modelo cobre
uma ampla gama de possíveis interações (por exemplo, arestas com pesos) e atribu-
tos de nó (por exemplo, distribuições não gaussianas), bem como redes esparsas, ao
mesmo tempo que explora a conexão entre famílias exponenciais e divergências de
Bregman permitindo uma expressão elegante para a função de log-verossimilhança.
Extensos experimentos numéricos usando dados sintéticos indicam que o algoritmo
proposto supera algoritmos clássicos que aproveitam apenas informações de rede ou
apenas atributos bem como algoritmos de última geração que também aproveitam
ambas as fontes de informação. A avaliação preliminar utilizando conjuntos de da-
dos reais também indica a superioridade da proposta abordagem na detecção de
comunidades. As contribuições deste trabalho fornecem insights sobre as técnicas
práticas para inferir rótulos de comunidade em redes atribuídas a nós.
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Network clustering tackles the problem of identifying sets of nodes (communities)
that have similar connection patterns. However, in many scenarios, nodes also have
attributes that are often correlated with the clustering structure. Thus, network
information (edges) and node information (attributes) can be jointly leveraged to
design high-performance clustering algorithms. Under a general model for the net-
work and node attributes, this work presents an iterative clustering algorithm that
maximizes the joint likelihood, assuming that the probability distribution of network
interactions and node attributes belong to exponential families. This model covers
a broad range of possible interactions (e.g., edges with weights) and node attributes
(e.g., non-Gaussian distributions), as well as sparse networks, while also exploring
the connection between exponential families and Bregman divergences allowing for
an elegant expression for the log-likelihood function. Extensive numerical experi-
ments using synthetic data indicates that the proposed algorithm outperforms classic
algorithms that leverage only network or only attribute information as well as state-
of-the-art algorithms that also leverage both sources of information. Preliminary
evaluation using real datasets also indicate the superiority of the proposed approach
in detecting communities. The contributions of this work provide insights into the
practical techniques for inferring community labels on node-attributed networks.
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Chapter 1

Introduction

1.1 Network Clustering

Many domains of science have made efforts to study systems composed of several
elements. In this sense, not only the elements individually, but also the interaction
between them is of great importance towards a broad understanding of the object of
study. In this sense, graphs emerge as a powerful abstraction capable of representing
different relationships. In a graph, vertices represent entities and edges encode the
relation between them. Some examples are: computer network communication,
where vertices represent endpoints, commuters and routers, and edges represent the
links connecting them, or biological networks where vertices may represent human
tissue proteins and edges the interactions between them.

Furthermore, in many scenarios the structure is closely related with the function
performed: at proteins network, OhmNet [16] have shown capable of, given the
network structure and the representations found in an unsupervised manner, predict
the labels (protein roles at each human tissue), in bitcoin Elliptic network [17] it was
possible, from an supervised approach, predict whether the transaction was illicit
or not. To summarize, Network Science aims to study these complex relationships
and infer the role of an element given his structural position and has been gaining
a lot of importance over the last two decades.

In order to motivate the community detection problem, one can cite two contexts
in which it plays an important role: social networks and biological networks. The
first one is very intuitive, since people tend to interact more with others in the same
social context, e.g., coworkers in a company are more likely to be friends than with
people from other companies. The second, although less intuitive, aims to study
how cellular networks are organized and correlated with biological functions, e.g.,
proteins that belongs to the same human tissue are more likely to interact with each
other. Next, one example to illustrate each domain is shown.
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Figure 1.1: Zachary Karate Club. Taken from [1]

A very common network in literature is the Zachary’s Karate Club. This network
is composed by 34 vertices and 78 edges. Everybody in the club knew each other, but
the sociologist Wayne Zachary annotated the links between people who displayed
regular interactions outside the club. So one may ask what makes this network
so interesting. There was a divergence between the president of the club and the
instructor, hence students followed one or the other, splitting the community in two.
This splitting unveiled the underlying community structure and is directly related
with the connections in the graph.

Another popular application of community detection is in metabolic networks.
In this sense, Ravasz and collaborators [2] made the first attempt to identify groups
in such systems. In the experiment, they not only found community structures, but
also shown their hierarchical organization, which is depicted in Figure 1.2, taken
from [18]. There, each color is associated with predominant biochemical class of the
molecule. Also, one can see that the groups found have some degree of overlapping,
which can be seen as the generalization of the problem of finding hard communities.
Indeed, communities play an important role in human diseases, such that proteins
of the same disease are likely to interact. This finding was crucial to develop many
hypothesis in health sciences.

In this context, community detection is a fundamental problem, since it unveils
the inherent network structure. It consists of finding subsets of nodes where nodes
within each subset are strongly linked with respect to nodes outside the subset.
Formally, communities are described as a locally dense connected subgraph in a
network. This relies on two hypothesis:

• Connectedness: Each community is composed of connected subgraphs.

• Density: Members inside the same community are more likely to have connec-
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Figure 1.2: Hierarchical clustering of molecules. Taken from [2]
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tions with members from the community than with others outside the com-
munity.

Hence, several definitions are consistent with these hypothesis, like:

• Maximum Cliques: Groups of elements that form a complete subgraph

• Strong Community: The subgraph C forms a strong community if, for each
vertex i ∈ C, the number of connections with other nodes inside the com-
munity, also called internal degree, is greater than the number of connections
outside, called external degree. Let kinti (C) be the internal degree of node i in
partition C, and kexti (C) the external degree. Hence: kinti (C) > kexti (C).

• Weak Community: The subgraph C forms a weak community if∑
i∈C k

int
i (C) >

∑
i∈C k

ext
i (C)

Community detection is also known as graph partitioning, a classic combinatorial
problem in graph theory. For example, the bisection problem consists in finding two
subsets of nodes of equal size such that the edge cut size between them is minimized.
In this work we consider the problem of detecting communities with and without
overlap. Vertices may belong to multiple communities simultaneously, for example, a
person can have her group of family members, group of friends from school and group
of friends from college, and so on, which turns the objective even more challenging.

1.2 Data Clustering

In the era of big data, one may be interested in extracting patterns on the data,
i.e., finding trends that are useful for business, medicine, and so on so forth. For
this end, computational intelligence and data mining disciplines have emerged as
valuable tools for data analysis and new knowledge discovery, and in this thesis
we focus on the problem of partitioning data into subgroups. Normally, one may
divide the problem in two main approaches. The first, as known as supervised task,
is when labels for each data point is provided, and an algorithm find partitions by
minimizing an objective function that depends on such labels. The second, as known
as unsupervised task, occurs when one aims to find partitions based solely on the
set of observations, without any sort of labels. In this work we focus on the latter,
using cluster analysis to find partitions where data points are somehow similar in a
broad sense.

For example, one can analyze the problem formulation of fuzzy c means. Given
X = {x1, x2, x3, ..., xn}, being xk, k ∈ {1, 2, ..., n}, a characteristics vector ∈ RP such
that xk = [xk1, xk2, ..., xkp], the fuzzy clusterization algorithm consists in finding a
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partition A = {A1, A2, ..., Ac} that best represents the data, i.e., minimizes the
following objective function:

Jm =
n∑
i=1

c∑
j=1

Amij ||xi − vj||2 (1.1)

Here A is a matrix, and Aij = Aj(xi) represents the belonging of point xi in
cluster j. On the other hand, Jm measures the dissimilarity between xi points and
the centers vj. It is worth remembering that c is an input variable that determines
the amount of clusters. In the following chapters, the notion of similarity, as well
as dissimilarity, is better explored using a class of functions known as Bregman
divergences. In this way, we further define an objective function so that we can
algorithmically find partitions with some characteristics.

1.3 Contribution

While graph clustering and data clustering have been studied independently for a
long time, it is only recently that they have been unified into a single formulation.
In attributed networks, each node in the network is associated with vector ∈ RP .
Hence, nodes can be clustered using only the node attributes (data clustering), only
the network structure (graph clustering), or a combination of both (joint clustering).
This work focus on the latter, where both attribute information and network struc-
ture are considered together. In particular, the following contributions are made:

• Two clustering algorithms using pseudo-likelihood assuming exponential fami-
lies

• Extensive algorithm evaluation and comparison with others

• Preliminary evaluation considering real datasets

The remainder of this document is organized as follows: In Chapter 2 we present
background and related works. In Chapter 3 we bring a theoretical perspective
behind the Bregman divergences. In Chapter 4 we present the framework along
with some variations. In Chapter 5 the methodology used is presented along with
the evaluation procedure. In Chapter 6 we end with the conclusion and show future
works.
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Chapter 2

Background and Related Works

Communities play an important role in many fields, since in many contexts the
network is closely related to the function of a vertex. However, it is necessary to
discuss what we mean by the word structure and what kind of problems arise from
it. The main basis behind the relationship between structure and function is that
in many areas it is observed that vertices which display similar characteristics tend
to form connections, in contrast with vertices that are far from each other in the
network. So one may ask, how are the vertices mixed/connected? Is there a non-
trivial community structure? Hence it is also necessary to specify a metric to capture
this pattern. A common metric present in the literature is the assortativity coeffici-
ent [19]. Let nij be the number of edges between nodes that display a characteristic
i and nodes that display a characteristic j and eij the average, i.e., nij normalized
by the total amount of edges, m:

eij = nij/m∑
ij

eij = 1∑
j

eij = d(i)∑
i

eij = d(j),

(2.1)

where d(i) is the total amount of edges incident to vertices that display characteristic
i and d(j) the total amount of edges incident to vertices that display characteristic
j. Now one can easily derive the assortativity coefficient by comparing the observed
eij with the expected value if the configuration model is assumed, where the edges
are positioned by random:

r =

∑
i eii −

∑
i d(i)d(i)

1−
∑

i d(i)d(i)
(2.2)
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The denominator of the equation above is just a normalization factor, which repre-
sents the maximum possible value, i.e., when there are only edges between vertices
of same type. From the equation above, if r = 0 then the connections are totally
random, otherwise if r > 0 then there is a trend to form connections between nodes
with similar characteristics.

Now, the next question one may be wondering to answer is: Which nodes are in
each community? This latter one is the focus of the present work, and can be divided
in two sub categories: Non-overlapping and overlapping community detection.

2.1 Non Overlapping Community Detection

In this approach the objective is to find a partition P = {A1, ..., Ak} that divi-
des the nodes in k non-overlapping subsets, where each node belongs to one single
community. In this sense, many works have arisen in the literature and traditional
methods are broadly divided in divisive and agglomerative. The former works as
follows: at each iteration nodes (or subsets) that are similar according to a specific
metric are grouped together, until all the nodes are in the same cluster or a termi-
nation condition is reached. A popular one in this category is the Girvan-Newman
algorithm [20][21]. The latter process begins with all nodes belonging to a single
community, and then removes edges one by one until all nodes are considered its own
community, producing a dendogram, which contains information about hierarchical
communities, e.g. the famous Ravasz Algorithm [2].

Other two common methods are, respectively, the modularity and cut optimi-
zation. However the second will be introduced in Subsection 2.2 where we discuss
Overlapping Community Detection, since it can be easily extended to that case.
The former seeks to maximize the following objective function:

M =
1

2m

∑
k

∑
i,j∈Vk

(
Aij −

dij
2m

)
(2.3)

In the equation 2.3 m is the total number of edges in the network, Aij is the total
number of edges inside the partition Vk and dij is the expected amount of edges un-
der the configuration (random) model. The configuration model is also a synthetic
network, and can be defined as a network where each pair of N nodes is connected
with probability p (Gilbert definition [22]), or as a network of N nodes with L ran-
dom links (Erdős and Rényi definition [23]). In this way, the modularity represents
how strong are the interactions, or how far we are from the configuration model.
Common algorithms for this problem are the following, proposed by Newman [24]
and Louvain[25]:
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• Newman: First, each vertex is assigned with a different partition. Next, com-
pute the modularity gain of merging two partitions for each pair. Merge the
pairs that result in highest gain. Save the partition and modularity value for
the respective step. Return to step 2, computing modularity gain, and repeat
the process until there is only one partition. Return the partition that has the
highest value of modularity. The complexity of this algorithm is O((n+m)m).

• Louvain: It’s also an heuristic algorithm, and very similar to Newman, but
works in O(m) time. First every vertex is assigned with a different partition.
Next, compute the modularity gain of moving the node to its neighbor parti-
tion, for every pair. Merge the pair that results in greater gain. Create a new
network were the merged parts become a single vertex. Repeat step 2 until
there is not any improvement.

Alternatively to the modularity function, Louvain can work with any partition qua-
lity function H(G,P ), such as the Constant Potts Model, defined as:

H(G,P ) =
∑
C∈P

[
E(C,C)− γ

(
||C||
2

)]
, (2.4)

with E(C,D) denoting the number of edges between nodes in communities C and D.
However, it is known that Louvain algorithm suffers from a couple of problems,

which induce badly connected communities. First, it can find communities that
are internally disconnected, as pointed out in [3]. Consider the following example
in figure 2.1: At a certain point of Louvain we can move a node (with label zero
in figure) that was acting like a bridge internally to another community such that
increases modularity. Hence, once the disconnected community becomes a node in
a new aggregated graph, it remains disconnected unless merged with another com-
munity that will act like a bridge. Second, the communities found by Louvain may
contain significant substructure, i.e., subgraphs that are densely connected. With
these problems in mind, Leiden algorithm [3] tries to mitigate such shortcomings.
It works as stated in algorithm 1.

In Leiden, the first step, called MoveNodesFast, tries to move every node to
another community, but is more efficient than Louvain because considers a queue
only with nodes which neighbor’s community has changed. The second step, called
RefinePartition, merges nodes from partion P, but instead of greedily merging, it
assigns a probability of merging to community C that is proportional to exp∆H,
where ∆H is the increase of partition quality function. Finally, the last step is
aggregation phase, which builds a new graph based on the partition Prefined. Further
details and guarantees may be found in their article, Appendix A.2.
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Algorithm 1 Leiden
Require: : graph G, partition P

do
P ←MoveNodesFast(G,P )
done← |P | = |V (G)|
if not done then

Prefined ← RefinePartition(G,P )
G← AggregateGraph(G,Prefined)
P ← {{v|v ⊆ C, v ∈ V (G)}|C ∈ P}

while not done

Figure 2.1: Louvain step may induce badly connected communities. Taken from [3]

2.2 Overlapping Community Detection

Here the problem is harder. Given a network, the goal is to determine the com-
munities, just like the previous question, but here each vertex may belong to one
or more communities. This is still an object of research, but two main algorithms
are CFinder[26] and LinkClustering [27]. The former relies on the definition that a
community is the set of k-cliques that shares k−1 neighbors, where k is a parameter
of the algorithm. The latter is based on clustering links (edges) that are somehow
similar. Consider an edge euv that connects vertices u and v and euw that connects
vertices u and w respectively. A similarity measure between them can be given by
the following equation:

S(euv, euw) =
|n+(v)

⋂
n+(w)|

|n+(v)
⋃
n+(w)|

(2.5)

In the equation 2.5 n+(v) is the list of the neighbors of node v, including itself.
Hence it measures the fraction of common neighbors that node v has in common
with node w divided by the total number of neighbors. In the literature it is known
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as Jaccard index.
Next, the Generalized Spectral Clustering method is presented, which is a pro-

cedure to represent nodes in Euclidean Space followed by soft clustering.

2.2.1 Generalized Spectral Clustering

The backbone of Generalized Spectral Clustering [28] method relies on the spectral
graph theory and, more precisely, at the properties of Graph Laplacians. A com-
mon way to represent graphs is by adjacency matrices, which essentially contains
all the information necessary. However there are other ways to represent graphs,
such as performing several transformations in adjacency matrices, which are called
Laplacians. One of such transformations is the unnormalized Laplacian, and is given
by:

L = D − A, (2.6)

where D is the degree diagonal matrix and A is the adjacency matrix. This trans-
formation has some interesting properties, such as:

• L is symmetric (LT = L) and positive definite (xTLx ≥ 0,∀x ∈ R|V |)

• xTLx =
∑

u−v∈E(x[u]− x[v])2

• L has |V | non negative eigenvalues

These properties are convenient when we talk about graph cuts and finding com-
munities. Let’s first see the case in which one is interested in finding two non-
overlapping communities in a graph. In this case the problem can be reduced to
finding the minimum cut. Let A1 denote a cluster and Ā1 = A2 its complemen-
tary, i.e., A1

⋃
Ā1 = V , and A1

⋂
Ā1 = ∅. Then the minimum cut problem can be

expressed by the following objective function, considering K = 2:

cut(A, Ā) =
1

2

K∑
k=1

|(u, v) ∈ {E} : u ∈ {Ak}, v ∈ {Āk}| (2.7)

The equation 2.7 means simply that one is interested in minimizing the number of
edges between communities. However, imagine that there is a vertex with degree
equal 1. Then by the above objective function this vertex could be considered a
community while the rest of the network another. This is a problem since one
would like to see a non trivial solution where the communities contain a sufficient
large amount of nodes. Hence, a common a approach is to minimize the ratio cut
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instead, which penalizes communities formed by a small number of nodes:

RatioCut(A, Ā) =
1

2

K∑
k=1

|(u, v) ∈ {E} : u ∈ {Ak}, v ∈ {Āk}|
|Ak|

(2.8)

The above equation can be rewritten in function of the Laplacian. Consider a vector
a ∈ R|V | such that:

a[u] =


√

Ā
A

if u ∈ A

−
√

A
Ā

if u ∈ Ā
(2.9)

Now, applying the second property of the Laplacian we have that:

aTLa =
∑

u,v∈{E}

(a[u]− a[v])2

=
∑

(u,v):u∈A,v∈Ā

(a[u]− a[v])2

=
∑

(u,v):u∈A,v∈Ā

(√
|Ā|
|A|
− (−

√
|A|
|Ā|

)

)2

= cut(A, Ā)

( ¯|A|
|A|

+
|A|
|Ā|

+ 2

)
= cut(A, Ā)

( ¯|A|+ |A|
|A|

+
|A|+ Ā

|Ā|

)
= |V |RatioCut(A, Ā)

(2.10)

So it can be seen that the Ratio Cut minimization problem can be written in terms of
the Laplacian, since the |V | multiplying factor doesn’t change the optimal solution.
To summarize, and adding the constraints relative to the vector a, the final objective
function is:

minA⊂V a
TLa

a ⊥ 1

||a||2 = |V |

a defined as in Equation 2.9

(2.11)

Removing the the last constraint, i.e., allowing a assume any continuum value:

mina∈R|V|aTLa

a ⊥ 1

||a||2 = |V |

(2.12)

Note, however, that the constraint removal allowed a relaxation of the problem.

11



If that equation was taken into account, the function to optimize would be NP-
Hard because we would be minimizing over a discrete set. Finally, the solution
of the above objective function is given by the second smallest eigenvector of the
Laplacian, according to the Rayleigh-Ritz theorem. Up to now only the separation
into two clusters was considered. In order to generalize to an arbitrary amount K
of clusters, one can obtain the K smallest eigenvectors of the Laplacian, represent
each vertex by the row of the matrix U formed by the concatenation of the K

smallest eigenvectors and then apply any clusterization method, like k-means, on
the embeddings obtained.

For example, let G(V,E) be a graph of |V | vertices, |E| edges and A be the
adjacency matrix of G such that A(u, v) = 1 if u is neighbor v and 0 otherwise.
Hence in graph of Figure 2.2, the Laplacian is given by:

Figure 2.2: Adjacency Matrix example

L =



4 −1 −1 −1 −1 0

−1 2 0 −1 0 0

−1 0 4 −1 −1 −1
−1 −1 −1 4 0 −1
−1 0 −1 0 2 0

0 0 −1 −1 0 2


It can be seen that L have the following eigenvalues and eigenvectors:

λ0 = 0, v0 = ⟨1, 1, 1, 1, 1, 1⟩
λ1 = 4, v1 = ⟨−1, 1,−1,−1, 1, 1⟩
λ2 =

−
√
13+7
2

, v2 =
〈
0,−1,

√
13−3
2

, −
√
13+3
2

, 1, 0
〉
, v3 =

〈
−
√
13+3
2

,−1,
√
13−3
2

, 0, 0, 1
〉

λ3 =
√
13+7
2

, v4 =
〈
0,−1, −

√
13−3
2

,
√
13+3
2

, 1, 0
〉
, v5 =

〈√
13+3
2

,−1, −
√
13−3
2

, 0, 0, 1
〉

The lowest eigenvalue is λ2 = −
√
13+7
2

. If we would like to cluster the vertices in
k = 2 groups, we would have the following U matrix, composed of

[
vT2 , v

T
3

]
:
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U =



0 −
√
13+3
2

−1 −1
√
13−3
2

√
13−3
2

−
√
13+3
2

0

1 0

0 1


Finally, the vertex 0 would be represented in R2 by the point which corresponds

to row 0, i.e., (0, −
√
13+3
2

), vertex 1 by row 1 (-1, -1), and so on. The last step is
apply a clusterization tecnique, such as Gaussian Mixture Models [29], in order to
allow community overlapping.

2.2.2 Stochastic Block Model

Before going into other clustering algorithms, it’s important to describe some as-
sumptions about the network which are commonly made by them. Hence, in the
following subsection we will describe the Stochastic Block Model, the generative
network model and an inferencial model with such assumption.

First let’s consider the data generation. Let k be the number of communities,
and nk be the number of nodes inside of community k, where nk, k ∈ N. Let also
Θ be a k × k matrix such that Θrs is the probability of an edge leaving the group
(community) r and reaching group s, and Θrr is the probability of existing an edge
between nodes inside the same community. Hence, since we desire to evaluate the
algorithm at the situation where there is an evident community structure, we would
like that Θrr > Θrs,∀r, s ∈ 1, 2, .., k.

In this work, we consider that nk = n and Θrr = pin, i.e., the number of nodes is
the same in every community and the diagonal of the matrix is constant for every
community. Off the matrix diagonal we have Θrs = Θsr = pout, which means that
the probability of existing an edge between two communities is the same, and also
given by a constant pout.
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Figure 2.3: Stochastic Block Model with n = 50, k = 3, pin = 0.2, pout = 0.01

In Figure 2.3 we have an example of the model with parameters n = 50, k = 3,
pin = 0.2 and pout = 0.01. Hence, the matrix Θ is given by:

Θ =

 0.2 0.01 0.01

0.01 0.2 0.01

0.01 0.01 0.2

 (2.13)

Furthermore, given the model, one may be interested in finding the expected
value of the degree of a vertex inside a community:

E[di|i ∈ Vk] =
k∑
j=1

njΘij (2.14)

From the example in Figure 2.3, we have that:

E[di|i ∈ Vk] = 50× 0.2 + 50× 0.01 + 50× 0.01 = 11 (2.15)

Now let’s see how can we use inference. In order to find the communities, one may
solve by taking MLE and finding the parameters that are most likely associated
with a particular instance. For a network with n nodes and k communities, the
parameter to be found are θ ∈ Rkxk, a matrix that describes the probability of
connections within and between communities, and a vector of assignments, denoted
by z, that associates each node to a specific cluster. Hence, considering the adjacency
matrix A, the framework models the probability of existing and edge as:

P (Aij = 1|z) ∼ Bernoulli(θzizj) (2.16)

Since the problem is NP-Complete, no exact algorithm is known to find the optimal
structure in polynomial time. To tract such optimization task, some procedures
relies on EM, belief propagation, and MCMC accept-reject sampling [30] [31] [32].

14



Let’s analyse [32] proposal carefully, since it’s later used by other approaches. Let
Z be an assignment matrix, such that Zik = 1 ⇐⇒ i ∈ k denoting that node i
belongs to community k, and 0 otherwise. Under the stochastic block model, the
conditional log likelihood is given by:

logLA = log(P (A|z,Θ)) =
1

2

∑
i ̸=j

∑
k,l

Zi,kZj,l[aij log θkl + (1− aij) log(θkl)] (2.17)

They adopt a variational approximation - since P (Z|A) is not tractable - that aims
optimize a lower bound of logLA, denoted by:

J (RA) = logLA −KL[RA(·), P (·|A)],

where P (Z|A) denotes the true conditional distribution and RA is the approxima-
tion with respect to the indicator variables Z. The approximation RA considers the
variables Z1, . . . , Zn i.i.d. and has the following form:

RA(Z) =
∏
i

h(Zi; τi),

where τi = (τi1, ..., τiK) and h(·; τ) the multinomial distribution with parameter τ .
Let’s derive the E-step.

Given θ and π the prior such that P(Zik = 1) = πk, we want to find the optimal
variational parameters τi = argmaxτi J (RA). We begin rewriting J (RA) as:

J (RA) =
∑
Z

RA(Z) ∗ logP (Z,X)−
∑
Z

RA(Z) ∗ logRA(Z)

=
∑
i

∑
q

τiq log πq +
1

2

∑
i ̸=j

∑
q,l

τiq ∗ τjl ∗ log(θ
aij
ql ∗ (1− θql)

1−aij)−
∑
i

∑
q

τiq log τiq

In order to maximize the equation above we can take the derivative with respect
to τiq. It’s worth remembering that we must consider the constraint

∑
q τiq = 1,∀i.

Hence the Lagrangian has the following form:

∑
i

∑
q

τiq log πq +
1

2

∑
i ̸=j

∑
q,l

τiq ∗ τjl ∗ log(θ
aij
ql ∗ (1− θql)

1−aij)−
∑
i

∑
q

τiq log τiq

+
∑
i

[λi
∑
q

(τiq − 1)],
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and by taking the derivative wrt τiq and making equal to zero we have:

log πq +
∑
i ̸=j

∑
l

τjl log(θ
aij
ql ∗ (1− θql)

1−aij)− log τiq + 1 + λi = 0→

τiq ∝ πq
∏
j ̸=i

∏
l

[θ
aij
ql ∗ (1− θql)

1−aij ]τjl

Now let’s derive the M-step.
Given the variational parameters τiq, we want to find θ and π that maximizes

the Lagrangian of J (RA) + λ(
∑

q πq = 1). By taking the derivatives, one will find
that:

πq =
1

N

∑
i

τiq

θql =

∑
i ̸=j τiqτjlaij∑
i ̸=j τiqτjl

This finishes the MLE proposed and proofs needed.

2.3 Data Clustering

When we are presented with data lying on Rn other than a graph, too many pro-
cedures exist to find structured groups. This section aims to briefly present two
common algorithms for clustering, KMeans and Gaussian Mixture Model, which
will later be discussed under the geometric umbrella.

2.3.1 KMeans

Perhaps the oldest and most known algorithm for such task is the KMeans. It works
as follows:

• First, the number of clusters K is defined.

• Assign the initial cluster centroids.

• Compute, for each data point, the centroid with smallest distance. Assign the
data point to the cluster corresponding to closest centroid.

• Update each centroid by taking the mean of data points belonging to the
respective cluster

• Repeat last two steps until the number of iterations is satisfied or convergence.
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As it can be seen, KMeans is very simple and scalable. For initialisation of cluster
centroids, they can be taken randomly or accordingly to kmeans plus plus (k++ for
short). The later is often preferable in order to produce well separated clusters, and
is the default procedure of many packages, such as scikit learn. Such procedure in
described in Algorithm 2.

Algorithm 2 Kmeans++
Require: : data points X

Randomly select the first centroid
do

For each data point compute its distance from the nearest, previously chosen centroid
Select the next centroid from the data points such that the probability of cho-

osing a point as centroid is directly proportional to its distance from the nearest,
previously chosen centroid
while k centroids have not been sampled

2.3.2 Gaussian Mixture Model

Now we discuss Gaussian Mixture Models (GMM). The intuition behind latent mo-
dels is that the data has, beyond the multivariate random variables X, hidden ones,
which we call Z. In the clusterization problem not only these hidden variables can
be interpreted as the clusters that each vertex belongs to, but also its state can
be seen as the cause of the observable ones. Hence, let K be a model parameter
that specifies the amount of clusters, and let zi be a discrete hidden variable so zi
∈ {1, 2, ..., K}. We are interested in compute p(zi = k|xi, θ), which is the poste-
rior of sample i belonging to cluster k given the parameter θ of the model and the
observable variables xi. This value can be computed using Bayes rule:

rik = p(zi = k|xi, θ) =
p(zi = k|θ)p(xi|zi = k, θ)∑K

k′=1 p(zi = k′|θ)p(xi|zi = k′, θ)
(2.18)

In equation 2.18 rik is known as the responsibility that cluster k has over sam-
ple i, such that

∑
k rik = 1,∀i ∈ 1, 2, ..., n. In mixture models we have k base

distributions. The probability of observing xi given it belongs to community k is
p(xi|zi = k, θk) = pk(xi|θk). Hence, the probability of observing a sample xi is
obtained doing a weighted sum of each one of the base distributions:

p(xi|θ) =
K∑
k=1

πkpk(xi|θk), (2.19)

where πk is the mixture coefficient such that 0 ≤ πk ≤ 1 and
∑

k πk = 1. In the
specific case of GMM we have each base distribution as a Multivariate Gaussian
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with mean vector µk and covariance matrix Σk. Hence the model has the form of[
p(xi|θ) =

∑K
k=1 πkN (xi|µk,

∑
k)
]
. Furthermore, the uncertainty of the partition for

a sample i can be given by 1−maxk rik. If this uncertainty is low enough, the soft
clustering problem can be reduced to the hard clustering by doing:

z∗i = argmax
k

ri_k = argmax
k

log p(xi|zi = k, θ) + log p(zi = k|θ) (2.20)

So far we supposed that the model parameters were known, however their estimation
is non trivial. Take the log likelihood in the case where all variables are observed:

lc(θ)
∆
=

N∑
i=1

log p(xi|θ) (2.21)

In this case the parameters θ of the model can be easily optimized via maximum
likelihood estimator. But for the model of latent variables we have that:

lc(θ) =
N∑
i=1

log

[∑
zi

p(xi, zi|θ)

]
=

N∑
i=1

log

[∑
zi

q(zi)
p(xi, zi|θ)
q(zi)

]
, (2.22)

where q(zi) is an arbitrary distribution over the hidden variables. Since one cannot
pass the log inside the sum, it is a function hard to optimize. A common approach
adopted is the Expectation Maximization algorithm. It consists of two steps, as
the name suggests, Expectation and Maximization, which are repeated until con-
vergence:

• Expectation - At this step we seek to maximize Equation (2.22) with respect
to the posterior q(zi). Remembering from the Jensen’s inequality, one can
find a lower bound that’s easier to optimize then Equation (2.22). Since
log(x) is a concave function, one can apply the inequality, that gives:

lc(θ) =
N∑
i=1

log

[∑
zi

q(zi)
p(xi, zi|θ)
q(zi)

]
≥

N∑
i=1

∑
zi

q(zi) log

[
p(xi, zi|θ)
q(zi)

]

=
N∑
i=1

∑
zi

q(zi) log [p(xi, zi|θ)]− q(zi) log(q(zi))

=
N∑
i=1

∑
zi

q(zi) log [p(xi, zi|θ)] +H(q(zi)),

(2.23)

where H(q(zi)) = −
∑

k p(zi = k) log p(zi = k) denotes the entropy. Observing
the equation above, one may ask which distribution qi is the best. Intuitively,
the best qi is the one that results in the tightest lower bound. In order to

18



obtain the best qi, we can rewrite Equation 2.23 as follows:

L(θ, qi) =
N∑
i=1

∑
zi

q(zi) log

[
p(xi, zi|θ)
q(zi)

]

=
N∑
i=1

∑
zi

q(zi) log

[
p(zi|xi, θ)p(xi|θ)

q(zi)

]

=
N∑
i=1

∑
zi

q(zi) log

[
p(zi|xi, θ)
q(zi)

]
+

N∑
i=1

∑
zi

q(zi) log [p(xi|θ)]

=
N∑
i=1

−KL(q(zi)||p(zi|xi, θ)) + log [p(xi|θ)]

(2.24)

Since we want to maximize the lower bound, we can set the distribution
qi(zi) = p(zi|xi, θ), which makes the Kullback Leibler divergence equals zero.
But θ is unkown, so instead we have qti(zi) = p(zi|xi, θt), where θt deno-
tes the estimate of parameters at iteration t. This is the output of E step:
qti(zi) = p(Z|X, θt) = rik. Now, back to Equation 2.23 we have that the se-
cond term is constant wrt θ. So, at the maximization step the parameters will
be updated as follows:

θt+1 = argmax
θ

Q(θ, θt) = argmax
θ

Eqti [log p(xi, zi|θ)] (2.25)

• Maximization - At this step we seek to maximize the expected log-likelihood
Q(θ, θt−1) wrt πk and θk:

Q(θ, θt−1)
∆
= E

[∑
i

log p(xi, zi|θ)

]

=
∑
i

E

[
log

[∏
k

(πkp(xi|θk))I(zi=k)
]]

=
∑
i

∑
k

E[I(zi = k)] log[πkp(xi|θk)]

=
∑
i

∑
k

p(Z|X, θt−1) log[πkp(xi|θk)]

=
∑
i

∑
k

rik log πk +
∑
i

∑
k

rik log p(xi|θk)

(2.26)

With respect to πk we have that the maximum value of Q must respect the
constraint that F (πk) =

∑
k πk = 1. Hence, by taking the Lagrangian, we

have that the function we seek to maximize is given by L =
∑

i

∑
k rik log πk−

λ (
∑

k πk − 1), and to find the solution it suffices to solve the following equation
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∇L = 0:

∂L
∂πk

=
N∑
i=1

K∑
k=1

rik
1

πk
−

K∑
k

λπk = 0 (2.27)

Since for a specific k all the other terms are 0, then we have:

∂L
∂πk

=
N∑
i=1

rik
1

πk
− λ = 0 (2.28)

By multiplying the above result by πk:

∂L
∂πk

=
N∑
i=1

rik − λπk = 0

N∑
i=1

rik = λπk

(2.29)

Finally, summing over k both sides of the equation:

K∑
k=1

N∑
i=1

rik =
K∑
k=1

λπk (2.30)

Remembering the constraint that F (πk) =
∑

k πk = 1 and for a given data i
the sum of the responsibilities

∑
k ri_k = 1:

N = λ (2.31)

Plugging the result λ = N at the equations we have that:

K∑
k=1

[
N∑
i=1

rik

]
1

πk
−

K∑
k

N = 0[
N∑
i=1

rik

]
1

πk
−N = 0

N∑
i=1

rik = Nπk

πk =

∑
i rik
N

(2.32)

We solved for πk, now with respect to θk, or µk and Σk since it is a multivariate
gaussian distribution N (x|µ,Σ) ∆

= 1
(2π)D/2|Σ|1/2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
,
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and replacing Σ−1 for Λ, we have that the log likelihood is given by:

l(µ,Σ) = log p(D|µ,Σ) = N

2
log |Λ| − 1

2

N∑
i=1

(xi − µ)TΛ(xi − µ) (2.33)

By doing the substitution yi = xi−µ, applying the chain rule and remembering
that ∂

∂a
(aTAa) = (A+ AT )a:

∂

∂µ
(x− µ)TΣ−1(x− µ) = ∂

∂yi
yTi Σ

−1yi
∂

∂µ
= −1

(
Σ−1 + Σ−T ) yi (2.34)

Plugging this last result at the previous equation:

∂

∂µ
l(µ,Σ) = −1

2

N∑
i=1

−2Σ−1(xi − µ)

= Σ−1

N∑
i=1

(xi − µ) = 0

µ̂ =
1

N

N∑
i=1

xi = x̂

(2.35)

Now taking the MLE with respect to Λ:

l(Λ) =
N

2
log |Λ| − 1

2

∑
i

tr
[
(xi − µ)(xi − µ)TΛ

]
=
N

2
log |Λ| − 1

2
tr [SµΛ]

(2.36)

Where Sµ
∆
=
∑N

1=1(xi − µ)(xi − µ)T . Now taking the partial derivatives and
remembering that ∂

∂A
log|A| = A−T , ∂

∂A
tr(BA) = BT :

∂

∂Λ
l(Λ) =

N

2
Λ−T − 1

2
STµ = 0 (2.37)

But since Λ−T = Λ−1 = Σ:

Σ̂ =
1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)T (2.38)

Which gives the empirical covariance.
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2.4 Data and network clustering

So far we’ve considered only the network structure in order to find meaningful com-
munities. Real world data, in the other hand, commonly consists of mixed sources
of information, comprising both features and network structure. In this section,
we seek to bring two algorithms that leverages both sources: Attributed Stochastic
Block Model [4] and Contextual Stochastic Block Model [5].

2.4.1 Attributed Stochastic Block Model

The proposal of this work is very straightforward and simple. It seeks to find the
same parameters of the Stochastic Block Model, θ and vector assignments z (or
a binary indicator matrix Z such that Zic = 1 if node i belongs to community
c), but also the parameters of a Gaussian Mixture Model, µ and Σ, associated
with the attributes of each class. Their main assumption is that adjacency matrix
is conditionally independent from the attributes, giving the following probabilistic
graphical model in figure 2.4.

Figure 2.4: Modeling community membership in terms of attributes and connec-
tivity. Node-to-community assignments specified by Z are determined in terms of
adjacency matrix information, A and attribute matrix information, X. A and X are
assumed to be generated from a stochastic block model and a mixture of multivari-
ate Gaussian distributions, parameterized by θ and Ψ, respectively. Taken from [4]

In order to find such parameters they adopt the MLE procedure, in an Expec-
tation Maximization way, alternating between estimating p(Zic = 1|X,A) and the
parameters Ψ and Θ. Since the attributes matrix X are conditionally independent
from the network observation A, the total log-likelihood can be computed as a sum
of two parts, one that depends solely on the network and another on the attributes:
P (A,X,Z) = L = LA + LX .

The attribute likelihood of a model consisting of K communities is given by:
LX = P (X|Ψ) =

∑N
i=1 log{

∑K
j=1 πcN (xi|µc,Σc)}, where µc and Σc are the means

and covariance matrix respectively. Hence Ψ = (µ1, µ2, . . . , µk,Σ1,Σ2, . . . ,Σk). By
taking ai as the connectivity profile of node i, the likelihood of the network is given
by: LA = 1

2

∑
i ̸=j
∑

k,l Zi,kZj,l[aij log θkl + (1− aij) log(θkl)], the same as in [32].
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The inference procedure, once defined the likelihood functions, works as follows.
The E-step consists of computing ric = P (Zic = 1|Xi, ai), which taking Bayes
formula gives p(z|X,A) = p(X,A|z)p(z)/p(X,A). Now, assuming conditional inde-
pendence, it is equivalent to:

p(X,A|z)p(z)
p(X,A)

=
p(X|z)p(A|z)p(z)

p(X)p(A)

ric =
P (Xi|Zic = 1)P (ai|Zic = 1)πc∑
k P (Xi|Zik = 1)P (ai|Zik = 1)πk

(2.39)

At the M-Step they seek to estimate θc, µc,Σc, for every community, which are
given by:

µc =

∑N
i=1 ricXi∑N
i=1 ric

(2.40)

Σc =

∑N
i=1 ric(Xi − µc)(Xi − µc)T∑N

i=1 ric
(2.41)

θql =

∑
i ̸=j riqrjlaij∑
i ̸=j riqrjl

(2.42)

The first two equations where demonstrated in previous section. The last one is
essentially the result shown in [32].

2.4.2 Contextual Stochastic Block Model

To begin with, it’s another algorithm that also assumes that the network comes
from a Stochastic Block Model and the covariates come from Gaussian distributions.
However, they design an iterative algorithm rather than relying on MLE.

The full Algorithm 3 is stated bellow. It’s very simple. First they consider

Algorithm 3 CSBM

Require: : A ∈ RNxN , X ∈ Rnxd, K ∈ N∗, σ > 0, Z(0) ∈ {0, 1}nxK a membership
matrix and T ≥ 1.
do

Estimate model parameters
nk = |Ct

k|
W t = Zt(Dt)−1

Πt = (W t)TAW t

µk = (W t
k:)

TX
Refine the partition by solving for each node:

zt+1
i = argmink ||Ai:W t − Πt

k:

√
Σt
k||2 +

||Xi−µtk||
2

σ2

Build Zt+1 matrix from the assignments z
while 0 ≤ t ≤ T − 1
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an initialization of membership matrix Z. Next step is to estimate the parameters
of the model: the number of nodes in cluster k (nk), the partition W, the SBM
probability matrix Π and cluster covariate means µk. Once defined the parame-
ters, a refinement of the partition is considered is done. It consists of assigning
each node to the closest community, according to the distance function given by
||Ai:W t − Πt

k:

√
Σt
k||2 +

||Xi−µtk||
2

σ2 . The first part measures the distance between cur-
rent estimated connectivity profile and the estimated probabilities of SBM. The
second term depends only on the covariates, for which σk =

√∑
i ||Xi − µk||2/N .

Their algorithm mainly consists of two versions, one that considers the SBM
variance as well and another that doesn’t. The main difference is if the term Π is
rather multiplied by a a factor Σ or doesn’t. In the second approach, the factor Σ

is given by diag( ntk
Πkk

). They also propose other factors of Σ.
Another important key of their algorithms is that they are all initialisation sen-

sitive. Hence, they propose the following initialization procedure. They provide a

Algorithm 4 EM on graph embedding and covariates (EM-Emb)
Require: : adjacency matrix A, covariates X, number of communities K

Compute UK ∈ RnxK the matrix formed by the eigenvectors associated with
the top-K eigenvalues (in absolute order) of A

Merge the columns of UK with the columns of X to obtain a matrix X’
Cluster the rows of X’ by using an EM algorithm for GMM

comparison considering different initialisations of the algorithm in figure 2.5 bellow.

Figure 2.5: Random initialisation (rd) vs EM-emb. Extracted from [5].
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Chapter 3

Bregman Divergences

What is a Bregman divergence? What kind of space does it spans? What is the
relationship between Bregman divergences and exponential families? How to derive
clustering algorithms with such assumptions? It is to answer such questions that in
this chapter we bring the mathematical formalism behind Bregman divergences and
their geometrical properties under the umbrella of differential geometry. Much of
this theoretical analysis is due to the works of Banerjee [8] and Shun-ichi Amari [7].
In the fisrt part of this chapter we bring general concepts of information geometry
in an intuitive way for non mathematically inclined readers and, later, we show how
they are useful to pattern recognition.

3.1 Concepts of Information Geometry

3.1.1 Manifold

To begin with, we intent to present the manifold definition in an intuitive man-
ner. One can think about manifolds as many planes glued together with smooth
intersection. Such union may induce a curved topology. For example, a sphere is
a manifold such that in each point we have a tangent plane that is equivalent to a
two dimensional Euclidean space. Formally, "an n-dimensional manifold M is a set
of points such that each point has n-dimensional extensions in its neighborhood"1.

Since each point of the manifold is locally equivalent to an n-dimensional Eucli-
dean space, one can define a local coordinate system (or coordinate chart) associated
with each point. We will follow the same notation as used by Amari, such that the
n-coordinate system is the noted by ξ = (ξ1, . . . , ξn). The coordinate system de-
pends on the point p. We will denote the coordinate system associated with point
p as ξp, and the tangent plane in p as TpM. Hence, in the general case a unique
global coordinate system doesn’t exist. It’s also worth mentioning that the coordi-

1Taken from [7], page 3
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nate system is not locally unique either. Let ζ be another coordinate system such
that exists an one-to-one correspondence to ξp. If that holds, then the point p in a
manifoldM can be represented by both coordinate systems:

ξp = f(ζ1, . . . , ζn)

ζp = f−1(ξ1, . . . , ξn)

3.1.2 Tangent Plane

A differentiable function α : R → M is a differentiable curve in M. Take a small
piece of this curve, α(−ϵ, ϵ)→ S, such that α(0) = p ∈M. Let f be a differentiable
function of the manifold to R. The tangent vector of α in t=0 is the operator
α′(0) : f(M)→ R given by:

α′(0)f =
d(f ◦ α)

dt

∣∣∣
t=0

Thereby, a tangent vector in p is the vector with t=0 of a curve α(t)
∣∣∣ϵ
−ϵ
→ S

such that α(0) = p ∈ S. The set of all tangent vectors in p is denoted by TpM.
Let x be a parametrization that takes an open set U in Rn and takes to the

manifold x : U → M. If we take the tangent vector of the manifold coordinate
curves we will find the basis vectors of the tangent plane Bp = {( ∂

∂x1
)p, . . . , (

∂
∂xn

)p}.
For short, we will use ei ≈ ∂

∂xi
to denote the coordinate vector associated with the

ith curve.
Suppose we want to derive a function f(M) → R along a curve α. We can

represent the point p = α(0) as p = x(q), and the function we want to derive is
(f ◦ x)(q) = (f ◦ x)(x1, . . . , xn), with q = (x1, . . . , xn) ∈ U and (x−1 ◦ α)(t) =

(x1(t), . . . , xn(t)). Hence in a more general sense we have:

α′(0)f =
d(f ◦ α)

dt

∣∣∣
t=0

=
d(f ◦ x)(x−1 ◦ α)(t)

dt

∣∣∣
t=0

=
df ◦ x(x1(t), . . . , xn(t))

dt

=
∑
i

x′i(0)
∂

∂xi
(f ◦ x)(q) =

∑
i

x′i(0)

(
∂

∂xi

)
p

f

From above equations, we have that any tangent curve can be expressed in terms of
the parametrization x:

α′(0) =
∑
i

x′i(0)

(
∂

∂xi

)
p
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Figure 3.1: A curve on manifold. The set of all tangent vectors in p form the tangent
plane TpM

3.1.3 Charts

A chart ϕ is a mapping from a subset U ofM to Rn(ϕ : U −→ Rn).

Figure 3.2: Charts on a manifold. Extracted from [6]

A manifoldM is said to be smooth when the change of charts, and sub sequen-
tially the change of coordinates, is smooth, i.e., many times differentiable. Consider
the figure 3.2. We have two charts ϕM,α and ϕM,β, which taking a subset U ∈ M
and taking them to an Euclidean coordinate system. Note that they have an in-
tersection. If we wish to find a mapping from one coordinate system to another,
in the intersection, we must take the following actions: Vα → M → Vβ, which is
mathematically defined as ϕM,β ◦ ϕ−1

M,α. When such mapping is differentiable, the
manifold is differentiable.

3.1.4 Divergence

First of all, a divergence d is a function that takes two points P and Q and measures
their dissimilarity. In general, it is not a symmetric function, d[P,Q] ̸= d[Q,P ],
so it can’t be interpreted as a distance. P and Q are points of a manifold, so one
may use the notation d[P,Q] = d[ξP , ξQ] to emphasize that they may have different
coordinate systems.
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Any divergence must follow these properties:

• Non-negativity: d[P,Q] ≥ 0

• d[P,Q] = 0 ⇐⇒ P = Q

A manifold M is said to be Riemannian when a positive-definite matrix G(ξ) is
defined onM and the square of the local distance between two nearby points ξ and
ξ + dξ is given by ds2 = 2d[ξ, ξ + dξ] =

∑
ij gijdξidξj. As we will see later, one

can define a Riemmanian metric from the divergence, which gives us a Riemannian
manifoldM.

Bregman Divergences

The Bregman divergences form a special class. They are derived from a convex
function ϕ, so we will use the notation dϕ to emphasize that. Also, they satisfy the
following properties:

• Convexity: dϕ is convex with respect to the first argument

• Linearity: dϕ1+ϕ2(x, y) = dϕ1(x, y) + dϕ2(x, y)

• Linear separation: An hyperplane contains the set of all points such that
d(x, µ1) = d(x, µ2) for µ1, µ2 ∈ ri(S)

• Duality: The convex function ϕ and it’s conjugate ψ given by Legendre trans-
form satisfy:

dϕ(µ1, µ2) = ϕ(µ1) + ψ(θ2)− ⟨µ1, θ2⟩ = dψ(θ2, θ1)

• Generalized Pythagorean Theorem. The following inequality holds:

dϕ(x1, x2) + dϕ(x2, x3) ≤ dϕ(x1, x3)

The equality is attained when the dual geodesic connecting x1, x2 is orthogonal
to the geodesic connecting x2, x3.

Also, Bregman Divergences are derived from a convex function ψ. A strictly
convex function satisfies the Jensen’s inequality:

λψ(ξ1) + (1− λ)ψ(ξ2) ≥ ψ(λξ1 + (1− λ)ξ2)

λψ(ξ1) + (1− λ)ψ(ξ2) = ψ(λξ1 + (1− λ)ξ2) ⇐⇒ ξ1 = ξ2,

for any ξ1, ξ2 and 0 < λ < 1.
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Figure 3.3: Convex function and Jensen inequality

Let’s see a geometric interpretation. First, consider a convex function, without
loss of generality, as in Figure 3.4. We have the plane equation tangent to ξ0 given
by z = ψ(ξ0)+∇ψ(ξ0)(ξ−ξ0). Since ψ is convex, the tangent plane is always bellow
the function, i.e., doesn’t intersect at any other point (ψ(ξ) ≥ z(ξ)). We seek now
to measure how far the point ξ is from the supporting plane in ξ0. This gives us the
Bregman divergence, which has this following form:

D[ξ, ξ0] = ψ(ξ)− ψ(ξ0)−∇ψ(ξ0)(ξ − ξ0)

Figure 3.4: Tangent plane at point ξ0. Taken from [7]

Let’s go deeper in the structure derived from a Bregman divergence. We begin
defining a transformation that will give us another coordinate system - so far our
coordinate system is given by ξ. The Legendre Transform will kick in for this
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purpose. It is defined as:
ξ∗ = ∇ψ(ξ),

hence the transformation between ξ∗ and ξ is one-to-one and differentiable, because
the gradient vector in each point of the surface is different. We want to show that
these coordinate systems are coupled to each other, and more strictly that they form
a dual basis. Consider for a moment the following function ϕ = ψ∗(ξ∗):

ψ∗ = sup
ξ′
{ξ′ · ξ∗ − ψ(ξ′)} = ξ · ξ∗ − ψ(ξ) (3.1)

We want to show that this function is the dual of ψ. To see that, we differentiate
such function. Considering also that ξ is some function of ξ∗, this gives:

∇ψ∗(ξ∗) = ξ +
∂ξ

∂ξ∗
ξ∗ −∇ψ(ξ) ∂ξ

∂ξ∗

But we also have ξ∗ = ∇ψ(ξ). Hence:

∇ψ∗(ξ∗) = ξ +
∂ξ

∂ξ∗
∇ψ(ξ)−∇ψ(ξ) ∂ξ

∂ξ∗

ξ = ∇ψ∗(ξ∗)

Now we have the dualistic structure defined. The Legendre Transform can be
used always when a change of coordinates is needed. ψ∗ is commonly called by the
Legendre dual of ψ.

Figure 3.5: Relationship between each coordinate system. The basis vector is the
derivative along it’s respective curve. Taken from [7].

Finally, we’re ready to show how the Riemann metric emerges from the diver-
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gence. First, we bring the meaning of such metric. It’s, by definition, the product
between two coordinate vectors in a tangent plane TpM:

gij(ξ) = ⟨ei, ej⟩

In the special case of Euclidean manifold, we have gij = δij. For the Bregman
divergences, on the other hand, we can derive

gij(ξ) =
∂2D[ξ, ξ′])

∂ξi∂ξj
=
∂2ψ(ξ)

∂ξi∂ξj
= ∇2ψ

As we will see later, this is the Fisher Information Matrix, which is central to many
important insights in the field of information geometry, such as the so called Cramér-
Rao theorem. But what’s the relationship between the Hessians∇2ψ and∇2ϕ? This
result is due to Crouzeix [33], who proved that the following equality holds:

∇2ψ∇2ϕ = gij(ξ)g
ij(ξ∗) = I

∇2ψ = (∇2ϕ)−1

In above equation, gij is the Riemannian metric of the dual space and I the indentity
matrix. We denote for now on that the upper index refers to the dual coordinate
system. The result shows that the hessian of ψ is the inverse of hessian of ϕ.

3.1.5 Exponential Families

In this subsection we show that there’s an one-to-one correspondence between Breg-
man divergences and regular exponential distributions. To begin with, in the realm
of probability manifolds one commonly call the dualistic coordinate systems by the
letters θ = ξ and µ = ξ∗ to denote the natural parameters and expectation parame-
ters. The form of exponential distributions is given by:

pψ,θ = p(x, θ) = exp{θihi(x) + k(x)− ψ(θ)},

where x is a random variable, θ = (θi, . . . , θn) are the natural parameters, h(x)
are n linear independent functions of x and ψ(θ) is just a normalization constant.
It’s important to note that both h(x) and k(x) do not depend on the parameters
θ, and the function ψ does not depend on the variates. We write the expectation
parameters as:

µ = µ(θ) = ∇ψ(θ) = Epψ,θ [h(X)] =

∫
Rd
h(x)pψ,θ(x)dx
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Before we start the proof that the equality ∇ψ(θ) = Epψ,θ [h(X)] holds, we first note
that:

∂i

∫
p(x, θ)dx =

∫
∂ip(x, θ)dx

=

∫
p∂i ln pdx = Ep[∂i ln p]

Since
∫
p(x, θ)dx = 1, ∂i

∫
p(x, θ)dx = 0:

Ep[∂i ln p] = 0

Now we’re able to begin the proof:

Proof.

ln p = θihi(x)− ψ(θ)

∂i ln p = hi(x)− ∂iψ(θ)

Ep[∂i ln p] = Ep[hi(x)]− ∂iψ(θ)

Given that Ep[∂i ln p] = 0:

0 = Ep[hi(x)]− ∂iψ(θ)

∂iψ(θ) = Ep[hi(x)]

∇ψ(θ) = Ep[h(x)]

The relationship between these coordinate systems (derived from natural and ex-
pected parameters) follows from the Legendre transform, and are commonly denoted
as bellow:

µ(θ) = ∇ψ(θ)

θ(µ) = ∇ϕ(µ)

Also, the dual of ψ, ϕ, is written as follows in terms of the coordinate:

ϕ(µ) = ⟨θ(µ), µ⟩ − ψ(θ(µ)),∀µ ∈ int(dom(ϕ)). (3.2)

Now, how can one establish the relationship between Bregman Divergences and
exponential families? Forster and Warmuth [34] prove that:

log(p(ψ,θ)(x)) = −dϕ(x, µ(θ)) + log(bϕ(x)),

where bϕ is a normalizing function that depends only on x. To show that the
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relationship above holds we begin taking the density function of any exponential
family, and put other terms that don’t depend on distribution parameters inside
p0(x):

p(ψ,θ)(x) = exp{⟨x, θ⟩ − ψ(θ)}p0(x)

Now we use the relation −ψ(θ(µ)) = ϕ(µ)− ⟨θ(µ), µ⟩ from equation 3.2

p(ψ,θ)(x) = exp{⟨x, θ⟩+ ϕ(µ)− ⟨θ(µ), µ⟩}p0(x)

By rearranging and replacing θ = ∇ϕ(µ)

= exp{ϕ(µ)− ⟨x− µ,∇ϕ(µ)⟩}p0(x)

= exp{(−1) ∗ [−ϕ(µ) + ⟨x− µ,∇ϕ(µ)⟩]}p0(x)

Now we add and subtract ϕ(x) in order to write above in terms of a divergence

= exp{(−1) ∗ [ϕ(x)− ϕ(µ) + ⟨x− µ,∇ϕ(µ)⟩] + ϕ(x)}p0(x)

= exp{−dϕ(x, µ)}bϕ(x),

with bϕ(x) = exp{ϕ(x)}p0(x)

It’s important note that, since Legendre Transform is bijective, the pair (ϕ, ψ) is
uniquely related to a single exponential distribution, as in Figure 3.6, and ψ de-
notes the cumulant function. Also, it means that one can write any exponential
distribution as a function of either natural parameters or expected ones.

Let’s take for example the Gaussian distribution x ∼ N (µ,Σ). We can write as
follows:

p(x, a,Σ) =
1√

(2π)d|Σ|
exp{−1

2
(x− a)Σ−1(x− a)}

p(x, θ1, θ2) =
1√
(2π)d

exp{θ1x+ θ2xx
T +

1

4
θT1 θ

−1
2 θ1 +

1

2
log | − 2θ2|}

The second expression is in the canonical form p(x, θ) = exp{θihi(x) − ψ(θ)}b(x)
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with:

θ = [θ1, θ2]

θ1 = Σ−1a

θ2 = −
1

2
Σ−1

h(x) = [x, xxT ]T

b(x) =
1√
(2π)d

ψ(θ) = −1

4
θT1 θ

−1
2 θ1 −

1

2
log | − 2θ2|

a = E[x]

Σ = cov[x]

Hence, the vector [a,Σ] are the moment (expected) parameters and [Σ−1a, −1
2
Σ−1]

the natural (dual) parameters. But one may ask, why do I care about natural
parameters? It turns out that it’s better to optimize in the natural space rather
than in the expected parameter space due to plateaus of the vanilla gradient. Once
obtained the parameters in the natural space, one can go back to the moment
parameters with the Legendre transform. This idea is used in many results across
machine learning algorithms. For example [9] uses natural gradient to obtain optimal
policies in a reinforcement learning framework in which the vanilla gradient vanishes
in the direction of θ = k parameter. In [10] the natural gradient is applied to
optimize the parameters via MLE in a sensor networks context.

Figure 3.6: Exponential distributions and their expected parameters µ, natural
parameters θ and dual pair of functions (ϕ, ψ) associated. Taken from Banerjee[8].
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Figure 3.7: Vanilla gradient vs. natural gradient in [9]

Figure 3.8: Levaraging the geometry of the Riemannian manifold improves the gra-
dient for MLE. Taken from [10]
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3.1.6 Fisher Information Matrix

Given any regular statistic distribution parameterized by ξ, p(x, ξ), the Fisher In-
formation Matrix is, by definition:

Fij = Ep[∂ξil(x, ξ)∂ξj l(x, ξ)]

= −Ep[
∂2

ξiξj
l(x, ξ)]

=

∫
∂ξil(x, ξ)∂ξj l(x, ξ)p(x, ξ)dx,

where l(x, ξ) = ln p(x, ξ). This defines the unique Riemann metric for any distribu-
tion, due to Chentsov’s Theorem.

To see that Ep[∂ξil(x, ξ)∂ξj l(x, ξ)] = −Ep[ ∂
2

ξiξj
l(x, ξ)] holds, we consider the equa-

tion Ep[∂j ln p] = 0, which by taking the derivative on both sides:

∂iEp[∂j ln p] = ∂i

∫
p∂j ln pdx = 0

=

∫
p
∂2 ln p

∂i∂j
dx+

∫
∂p

∂i
∂j ln pdx

By applying the identity p∂i ln p = ∂ip:

=

∫
p
∂2 ln p

∂i∂j
dx+

∫
p∂i ln p∂j ln pdx = 0

Ep[∂ξil(x, ξ)∂ξj l(x, ξ)] = −Ep[
∂2

ξiξj
l(x, ξ)]

In our case of interest, the class of exponential distributions, we have:

Fij =

∫
− ∂2

ξiξj
l(x, ξ)p(x, ξ)dx

=

∫
∂2ψ(ξ)

∂ξi∂ξj
p(x, ξ)dx

since
∫
p(x, ξ)dx = 1, and that’s the only term depending on x:

=
∂2ψ(ξ)

∂ξi∂ξj
= gij,

which is the result given in subsection 3.1.4. It’s also easy to see that G =

cov[h(x)]. Since we have ∂i ln p = hi(x) − ∂iψ(θ) and ∂iψ(θ) = µi, it follows that
Ep[∂ξil(x, ξ)∂ξj l(x, ξ)] = Ep[(hi − µi)(hj − µj)] = cov[h(x)].

In statistical inference, one commonly wishes to infer the model parameters ξ
from p(x, ξ) that best fits the data. Considering the estimator as a function of the
observed data ξ̂ = f(x1, . . . , xn), the bias b(ξ) defines the discrepancy between the
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estimation and the true parameter:

b(ξ) = Ep[ξ̂]− ξ

For a large N, an unbiased estimator satisfies:

lim
N→∞

b(ξ) = 0

Now we’re ready to state the well-known Crámer-Rao Theorem:

Theorem 1 (Crámer-Rao). Given an asymptotically unbiased estimator ξ̂ the fol-
lowing inequality holds:

V = E[(ξ̂i − ξi)(ξ̂j − ξj)] ⪰
1

N
G−1 (3.3)

, in the sense that V −G−1 is positive semidefinite. The main result of this theorem
is that we have a lower bound for the error covariance matrix of any statistical
estimator: the inverse of the Fisher Information Matrix. Moreover, the second part
of this theorem states that the lower bound is attained when the estimator is from
the exponential family.

3.1.7 Affine Connection

In this subsection we see what kind of structure is induced by the Bregman Diver-
gences. Let τ(S) be the set of vector fields of class C∞ in S and F (S) the ring of real
functions of class C∞ defined in S. An affine connection ∇ is hence an application

∇ : τ(S)× τ(S)→ τ(S),

denoted by (X, Y )
∇−→ ∇XY that connects nearby tangent spaces and satisfies the

following properties:

• ∇fX+gYZ = f∇XZ + g∇YZ

• ∇X(Y + Z) = ∇XY +∇XZ

• ∇X(fY ) = f∇XY +X(f)Y ,
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given that X, Y, Z ∈ τ(S) and f, g ∈ F (S). We can express the field X and Y in
terms of local coordinates:

X =
∑
i

xi∂i

Y =
∑
j

yj∂j

with ∂i =
∂

xi

From above definitions, we can now establish ∇XY as:

∇XY =
n∑

i,j=1

xiyj∇∂i∂j +
n∑
j=1

X(yj)∂j

An important element of differential geometry are the Christoffel symbols, which
defines how the vector field ∇∂i∂j changes in terms of the coordinate fields ∂k:

∇∂i∂j =
∑
k

Γkij∂k

The Levi–Civita connection is the only affine connection (without torsion) such
that X⟨Y, Z⟩ = ⟨∇XY, Z⟩ + ⟨Y,∇XZ⟩. However, when it comes to Bregman di-
vergences, far more interesting are the dual connections (∇,∇∗), with (ΓDijk,Γ

D∗
ijk).

They are defined by taking the third derivative of the divergence:

ΓDijk = −
∂2

∂ξi∂ξj
∂

∂ξ′k
D[ξ, ξ′]

ΓD∗
ijk = −

∂2

∂ξ′i∂ξ′j

∂

∂ξk
D[ξ, ξ′]

Moreover, they are equal to zero.

ΓDijk = ΓD∗
ijk = 0

This means that the basis vector from a tangent plane TξM doesn’t change to
another in Tξ′M: in other other words, we have a global coordinate system θ given
by the natural parameters of the distribution and another one, µ, given by the
expected statistics. Hence, the structure induced by the Bregman divergences is a
dually flat manifold.
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3.1.8 Other divergences

So far we have studied Bregman divergences and their properties. There are, howe-
ver, many other functions to measure dissimilarities. In this subsection we bring
some other common divergences.

f-divergences

Any divergence that can be written in the form

Df [p, q] =
∑
i

pif(
qi
pi
)

, with f(1) = 0 and f being a convex and differentiable function is an f-divergence.
They are invariant and decomposable. See Amari [7] for the definition of Invariance
Criterion.

One important f-divergence is the Hellinger. It measures the distance between
probability distributions:

H2(P,Q) =
1

2

∫
X

(√
(Pdx)−

√
(Qdx)

)2
, where X is the measure space.

α-divergences

The α-divergence has the following form:

Dα[p, q] =
4

1− α2
(1−

∑
i

p
1−α
2

i q
1+α
2

i ), α ̸= ±− 1

The KL-divergence is an α-divergence for α = −1. The α-divergences is the unique
class belonging both to f-divergences and Bregman divergences.

Rényi divergence

Given α ∈ (0, 1)
⋃
(1,∞) it is defined as

Dα[p, q] =
1

α− 1
log

∫
pαq1−αdµ

, it generalises the KL-divergence.
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3.2 Pattern Recognition

Finally we’re ready to establish how exponential families are used for clustering. We
consider in this section the estimation of a model M = {p(x, ξ)} where x is formed
by some observed variables y and hidden ones, h, such that M = {p(y, h, ξ)}. Also,
we give a geometric interpretation for the MLE.

3.2.1 Geometric Interpretation of MLE

First, let’s take the joint distribution denoted by q(y, h). It is not fully observed,
but we can rewrite as a product of the empirical observed distribution q(y) and
the conditional q(h|y). The conditional distribution is arbitrary, so we consider all
possible candidates lying in the data (sub)manifold:

D = {q(y, h)|q(y, h) = q(y)q(h|y),
∑
h

q(h|yi) = 1,∀i} (3.4)

Now we use the empirical distribution, given by:

q(y) =
1

N

∑
δ(y − yi) (3.5)

Hence, the full distribution is:

q(y, h) =
1

N

∑
δ(y − yi)q(h|y) (3.6)

Because a convex combination with respect to q(y, h) also belongs to the submanifold
D (see eq. 3.7), the data manifold is called m-flat. See [7], page 37, for further
definitions of m-flat and e-flat structure of exponential distributions.

λ1q1(y, h) + λ2q2(y, h) = (λ1q1(y|h) + λ2q2(y|h))q(y) (3.7)

Now, how can one relate the manifold given by the model parameters M =

{p(x, ξ)} and the data manifold D? The following theorem states this relation:

Theorem 2. The MLE is the minimizer of the KL-divergence from D to M

Before going into the demonstration, let’s first state this useful lemma.

Lemma 1. The e-projection from a point of M to D does not alter the conditional
distribution q(h|y) and hence the conditional expectation of h.

The proof of the lemma above can be show as follows:
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Proof.

KL[q(y, h), pξ(y, h)] =

∫ ∫
q(y, h) log

(
q(y, h)

pξ(y, h)

)
=

∫ ∫
q(y)q(h|y) log

(
q(h|y)q(y)
pξ(h|y)pξ(y)

)
=

∫ ∫
q(y)q(h|y)

[
log

(
q(h|y)
pξ(h|y)

)
+ log

(
q(y)

pξ(y)

)]
=

∫
q(y) log

(
q(y)

pξ(y)

)∫
q(h|y)dh+

∫
q(y)

∫
q(h|y) log

(
q(h|y)
pξ(h|y)

)
dhdy

Since
∫
q(h|y)dh = 1, the first term doesn’t depends on h, which leads to:

=

∫
q(y) log

(
q(y)

pξ(y)

)
+

∫
q(y)

∫
q(h|y) log

(
q(h|y)
pξ(h|y)

)
dhdy

=

∫
q(y) log

(
q(y)

pξ(y)

)
+

∫
q(y)KL[q(h|y), pξ(h|y)]

The minimum above is attained minimizing the KL divergence of the second term,
which is attained iff q(h|y) = pξ(h|y). This finishes the proof of theorem 2 for the
e-step.

From the above lemma we have that q(h|y) = p(h|y, ξ). It’s proof is essentially
what we’ve found in equation 2.24 for Gaussian Mixture Model. We wanted to
maximize the lower bound in e-step, and to achieve so we set q(h|y) = p(h|y, ξ).
Now we see that this result can be generalized to any distribution.

Now we go through the demonstration of theorem 2 for the m-step.

Proof.

KL[D,M ] = KL[q(y)q(h|y), p(y, h, ξ)] =
∫
q(y)q(h|y) log q(y)q(h|y)

p(y, h, ξ)
dydh

=

∫
q(y)[

∫
q(h|y) log q(h|y)dh− q(y)

∫
q(h|y) log p(y, h, ξ)dh]dy

We seek to minimize above expression with respect to ξ and q(h|y). To minimize
with respect to ξ, we see that only the second term is a function of ξ:

min
ξ
KL[D,M ] = min

ξ
−
∫
q(h|y) log p(y, h, ξ)dh

= max
ξ

∫
q(h|y) log p(y, h, ξ)dh
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We must take the derivative of above with respect to ξ and make it equals to zero:

∂

∂ξ

∫
q(h|y) log p(y, h, ξ)dh = 0∫
q(h|y)
p(y, h, ξ)

∂p(y, h, ξ)

∂ξ
dh = 0

Now we use the lemma that got us q(h|y) = p(y, h, ξ), which replacing in last
equation: ∫

∂p(y, h, ξ)

∂ξ
dh = 0

This is exactly the expression for MLE and finishes the proof. The ξ found in this
step is called the m-projection from a point in D to M.

Figure 3.9: Expectation maximization as successive projections between data mani-
fold D and model manifold M. Both M and D are submanifolds of the manifold of
all distributions in P (x) : M,D ⊂ P (x). Because we have a dual flat manifold, the
projection is unique. Taken from [11]

Now, one may be wondering, what if instead using KL divergence to make the
projection we used another one? That’s exactly what Yu Fujimoto and Noboru
Murata proposes in [35], called the UM-algorithm, which instead of using the e-
projection, they use the u-projection with u denoting the convex function to measure
the distance between the manifolds.

3.2.2 Clustering with Bregman Divergences

Now we discuss two procedures, hard and soft Bregman clustering, proposed by
Banerjee et al. [8] to find clusters given a general Bregman divergence. The hard
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procedure finds a partition in which each point either belongs or not to a certain
cluster, while the soft procedure attributes a probability distribution over the clus-
ters.

Let’s begin estimating the parameter s given the observations X of a cluster.
Consider a random variable X ∈ Rd following a probability measure p. Given
a Bregman divergence dϕ, the objective function for finding the optimal cluster
representative s is:

Jϕ(s) = min
s∈Rd

Ep[dϕ(X, s)] = min
s∈Rd

N∑
i

pidϕ(xi, s) (3.8)

The solution is given s∗ = µ = Ep[X], which is the unique and global minimizer
since ϕ is convex.

Proof. To show that the expectation of X is the global minimizer of Equation 3.8,
we begin writing the difference between the objective function for any value of s and
the optimal s∗ = µ in terms of a divergence:

Jϕ(s)− Jϕ(µ) = Ep[dϕ(X, s)]− Ep[dϕ(X,µ)])

= Ep[ϕ(X)− ϕ(s)− ⟨∇ϕ(s), X − s⟩]− Ep[ϕ(X)− ϕ(µ)− ⟨∇ϕ(µ), X − µ⟩]

= −Ep[ϕ(s)]− ⟨∇ϕ(s), Ep[X]− s⟩+ Ep[ϕ(µ)] + ⟨∇ϕ(µ), Ep[X]− µ⟩

Since, by definition, Ep[X] = µ, and the expectation Ep[ϕ(·)] doesn’t depend on X:

= ϕ(µ)− ϕ(s)− ⟨∇ϕ(s), µ− s⟩

= dϕ(µ, s) ≥ 0

Since dϕ(µ, s) = 0 ⇐⇒ µ = s, it finishes the proof.

Another strong result from [36] is that the converse is true, i.e., if E[X] is the
minimizer, then dϕ must be a Bregman divergence.

Proof. Take two points, X = {a, b}, such that pa + pb = 1 and Ep[X] = apa + bpb.
Since Ep[X] is the minimizer, it holds the inequality:

paF [a, s] + pbF [a, s] ≥ paF [a, µ] + pbF [b, µ]

And:

pa
∂F [a, µ]

∂s
+ pb

∂F [b, µ]

∂s
= 0
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Now, if we replace pa = (µ−b)/(a−b) and pb = 1− (µ−b)/(a−b) = (a−µ)/(a−b):

µ− b
a− b

∂F [a, µ]

∂s
= −pb

∂F [b, µ]

∂s
=
µ− a
a− b

∂F [b, µ]

∂s
1

µ− a
∂F [a, µ]

∂s
=

1

µ− b
∂F [b, µ]

∂s

As a consequence of above equality we can conclude that, for any x ∈ X, 1
s−x

∂F [x,s]
∂s

=

constant, and hence we can write as a function of s only:

1

s− x
∂F [x, s]

∂s
= H(s) (3.9)

Now, we define ϕ(s) as:

ϕ(s) =

∫ s

0

∫ s′

0

H(t)dtds′

Which gives ϕ(0) = ϕ′(0) = 0, ϕ′′(s) = H(s). Finally we solve the equation 3.9 by
integrating both sides:∫

∂F [x, s]

∂s
ds =

∫
(s− x)H(s)ds =

∫
sH(s)ds− x

∫
H(s)

make the substitution
∫
udv = uv −

∫
vdu with:

u=s; u’=1; v’=H(s); v =
∫
H(s)

= s

∫
H(s)dy −

∫ ∫
H(s)ds− xϕ′(s)

= sϕ′(s)− ϕ(s)− xϕ′(s)

Now we have:

F (x, s)− F (x, x) = sϕ′(s)− ϕ(s)− xϕ′(s)− xϕ′(x) + ϕ(x) + xϕ′(x)

= ϕ(x)− ϕ(s) + (s− x)ϕ′(s)

= ϕ(x)− ϕ(s)− (x− s)ϕ′(s)

Because F (x, x) = 0, the non-negativity of F implies that F is always above the
tangent plane in s, and hence we have that ϕ must be convex.

Finally, we’re ready to establish the clustering objective function. Given K
clusters, denoting µj the representative of cluster j Cj, and Z ∈ {0, 1}N×K such

44



that Zij ⇐⇒ xi ∈ Cj, we have:

min
Z,µ

K∑
j=1

∑
xi∈Cj

pidϕ(xi, µj)

To address the above problem, they apply the k-means algorithm, generalized by
any divergence function. It is stated in algorithm bellow.

Algorithm 5 Bregman Hard Clustering
Require: : Bregman divergence dϕ, initial cluster representatives (µ1, . . . , µK).

do
Cj ← ∅,∀j ∈ (1, . . . , K)
for each x ∈ X do

hi = argminh dϕ(xi, µh)
Xhi ← Xhi

⋃
xi

for each Cj ∈ (C1, . . . , CK) do
µj =

1
|Cj |
∑

xi∈Cj xi

while Not convergence

The algorithm 5 monotonically decreases the loss function. To see that it suffices
to note that:

K∑
j=1

∑
xi∈Cj

pidϕ(xi, µ
t
j) ≥

K∑
j=1

∑
xi∈Cj

pidϕ(xi, µ
t+1
j ) ≥

K∑
j=1

∑
xi∈Ct+1

j

pidϕ(xi, µ
t+1
j )

Now let’s see the soft algorithm, for which we have to estimate parameters of a
mixture distribution. Under the assumption of an exponential family, we seek to
maximize the log-likelihood of the distribution. This is essentially the direct ap-
plication of MLE. Since we’ve established the probability distribution in the form
exp{−dϕ(x, µ)}bϕ(x), the MLE is the same as minimizing the negative log-likelihood,
i.e., minimizing the total divergence in expectation. Hence, in the soft clustering
scenario we must estimate the parameters M = {µj, πj}Kh=1 which maximize the
likelihood given by:

L(M) = P (x|M) =
K∑
j=1

πjexp{−dϕ(x, µ)}bϕ(x)

With the parameterization of exponential families considering the expected parame-
ters in mind makes the application of EM algorithm straightforward for any Bregman
Divergence as follows:
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• The expectation E-step can be computed by:

p(xi ∈ Cj) =
πjexp{−dϕ(x, µj)}bϕ(x)∑K
h=1 πhexp{−dϕ(x, µh)}bϕ(x)

• The maximization M-step can be computed by:

πj =
1

N

∑
i

p(xi ∈ Cj)

µj =

∑
i p(xi ∈ Cj)xi∑N
i=1 p(xi ∈ Cj)

However, in order to apply the algorithm 6, and assuming we are given the natural
parameters and ψ instead, we would have to find ϕ first, given by ϕ(x) = supθ{θ ·
x − ψ(θ)}. Finding ϕ(x) in this case is exactly the same as finding the MLE of
P (x|M∗) = p(ψ,θ)(x) = exp{⟨x, θ⟩ − ψ(θ)}p0(x), and wouldn’t be computationally
efficient. In our algorithm we hence assume that ϕ is given. Another possibility
would be changing the algorithm to compute the gradients of Expected lower bound
(ELBO) of log-likelihood in the natural space. Hoffman et al. [37] proposes using the
natural gradient to maximize the ELBO of the log-likelihood under the variational
approach.

Algorithm 6 Bregman Soft Clustering
Require: : Bregman divergence dϕ, initial cluster representatives (µ1, . . . , µK).

do
for each xi ∈ X do

p(h = j|xi) = πjexp{−dϕ(x,µj)}∑K
h=1 πhexp{−dϕ(x,µh)}

for each Cj ∈ (C1, . . . , CK) do
πj =

1
N

∑
i p(h = j|xi)

µj =
∑
i p(h=j|xi)xi∑N
i=1 p(h=j|xi)

while Not convergence
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Chapter 4

Iterative Algorithms for Clustering

In this chapter we tackle the probabilistic formulation of clustering networks with
node attributes using Bregman divergences, as well as a discussion about the regime
that allow us obtain the community labels. Therefore, this chapter is divided in two
parts. In the first we bring a discussion about the exact recovery threshold, and the
second we discuss algorithms in order to achieve the pseudo - since we adopt the
variational approach for the network likelihood - MLE.

4.1 Exact recovery in node attributed networks

Consider a population of n objects, called nodes, partitioned into K ≥ 2 disjoint
sets, called blocks or communities. A node-labelling vector z = (z1, · · · , zn) ∈ [K]n

represents this partitioning so that zi indicates the block of node i. The labels
(blocks) of nodes are random variables assumed to be independent and identically
distributed such that P(zi = k) = πk for some vector π ∈ (0, 1)K verifying that∑

k πk = 1. Hence,

P (z) =
n∏
i=1

πzi . (4.1)

The nodes interact in unordered pairs giving rise to undirected edges, and X is
the measurable space of all possible pairwise interactions. Additionally, each node
has an attribute that is an element of a measurable space Y . Let X ∈ XN×N denote
the symmetric matrix such that Xij represents the interaction between node pair
(ij), and by Y = (Y1, · · · , Yn) ∈ Yn the node attribute vector.

Assume that interactions and attributes are independent conditionally on the
community labels of the nodes. Let fkℓ(x) denote the probability that two nodes in
blocks k and ℓ have an interaction x ∈ X , and hk(y) denote the probability that a
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node in block k ∈ [K] has an attribute y ∈ Y . Thus,

P (X, Y | z) =
∏

1≤i<j≤n

fzizj(Xij)
n∏
i=1

hzi(Yi). (4.2)

In the following, assume that the interaction spaces X ,Y depend on n, as well
as the respective interaction probabilities f, h. In fact, n will increase to infinity
while K and π are constant. For an estimator ẑ ∈ [K]n of z, define the absolute
classification error as

loss(z, ẑ) = min
τ∈SK

Ham(z, τ ◦ ẑ),

where SK is the set of permutations of [K] and Ham(·, ·) is the hamming dis-
tance between two vectors. An estimator ẑ = ẑ(X, Y ) achieves exact recovery if
P (loss(z, ẑ) ≥ 1) = o(1).

4.1.1 Exact recovery threshold in node-attributed SBM

The difficulty of classifying empirical data in one ofK possible classes is traditionally
measured by the Chernoff information [38]. More precisely, in the context of network
clustering, let CH(a, b) = CH(a, b, π, f, h) denote the hardness of distinguishing
nodes that belong to block a from block b. This quantity is defined by

CH(a, b) = sup
t∈(0,1)

CHt(a, b), (4.3)

where

CHt(a, b) = (1− t)

[
K∑
c=1

πcDt (fbc∥fac) +
1

n
Dt (hb∥ha)

]
(4.4)

is the Chernoff coefficient of order t across blocks a and b, and Dt(f∥g) =
1
t−1

log
∫
f t(x)g1−t(x)dx is the Rényi divergence of order t between two probabi-

lity densities f, g [39]. The key quantity assessing the possibility or impossibility of
exact recovery in SBM is then the minimal Chernoff information across all pairs of
clusters. We denote it by I = I(π, f, h), and it is defined by

I = min
a,b∈[K]
a̸=b

CH(a, b). (4.5)

The following Theorem provides the information-theoretic threshold for exact reco-
very in node-attributed SBM.
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Theorem 3. Consider model (4.2) with πa > 0 for all a ∈ [K]. Denote by a∗, b∗

the two hardest blocks to estimate, that is CH(a∗, b∗) = I. Suppose for all t ∈ (0, 1),
lim
n→∞

n
logn

CHt(a
∗, b∗) exists and is strictly concave. Then the following holds:

(i) exact recovery is information-theoretically impossible if n
logn

I < 1;

(ii) exact recovery is information-theoretically possible if n
logn

I > 1.

The proof for Theorem 3 is provided in our recently published paper [40], and
some examples are provided below.

Remark 1 (Binary SBM with no attributes). Suppose that fab ∼ Ber(αabn
−1 log n)

where αab are constants. A Taylor-expansion of the Rényi divergence between Ber-
noulli distributions leads to

I = (1 + o(1))
log n

n
min
a̸=b

sup
t∈(0,1)

(∑
c

πc
[
tαbc + (1− t)αac − αtbcα1−t

ac

])
,

which indeed coincides with the expression of the Chernoff-Hellinger divergence de-
fined in [41].

Example 1 (Binary SBM with Gaussian attributes). Suppose that fab ∼
Ber(αabn

−1 log n) and ha ∼ Nor(µa log n, σ
2Id), where αab and µa are independent

of n. Then,

I = (1 + o(1))
log n

n
min
a̸=b

sup
t∈(0,1)

(∑
c

πc
[
tαbc + (1− t)αac − αtbcα1−t

ac

]
+ t
∥µb − µa∥22

2σ2

)
.

In particular, the technical conditions of Theorem 3 are verified if we rule out the
uninformative case where all the αab’s and the µa’s are equal to each other. Thus,
exact recovery is possible if

min
a̸=b

sup
t∈(0,1)

(∑
c

πc
[
tαbc + (1− t)αac − αtbcα1−t

ac

]
+ t
∥µb − µa∥22

2σ2

)
> 1.

Further assuming that αab = α1(a = b)+β1(a ̸= b) (homogeneous interactions) and
π =

(
1
K
, · · · , 1

K

)
(uniform block probabilities), the expression of I simplifies to

I = (1 + o(1))
log n

n

[(√
α−
√
β
)2

K
+

∆2

8σ2

]
,

where ∆ = min
a̸=b
∥µa − µb∥2. This last scenario recovers the recently established

threshold for exact recovery in the Contextual SBM [42].
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Example 2 (Semi-supervised clustering in binary homogeneous SBM). Consider
homogeneous binary interactions given by

fab ∼

Ber(αn−1 log n) if a = b,

Ber(βn−1 log n) otherwise,

where α, β are constants independent of n. Consider a semi-supervised model in
which the vector of attributes Y is a noisy oracle of the true community labels z.
More precisely, for a node i such that zi = k, we have

hk(y) = P(Yi = y) =


1− η if y = 0,

η1 if y = k,

η0
K−1

if y ∈ [K]\{k},

with η0 + η1 = η. A bit of algebra shows that exact recovery is possible if(√
α−

√
β
)2
− 2

log n
log
(
1− η + 2(K − 1)−1/2√η0η1

)
> K.

When η0 = 0 (perfect oracle), the condition simplifies to
(√

a−
√
b
)2
− 2 log(1−η)

logn
>

K. Note that the oracle term is non-negligible only if − log (1− η) ≳ log n, as
previously established [43]. This last condition is very strong, since it implies that
the oracle must provide the correct label for almost all nodes, in particular η ≳

1− 1/n.

4.2 Bregman clustering of node-attributed

networks

4.2.1 Model formulation

We consider the model defined in (4.2) and we suppose that X = R, Y = Rd (d ≥ 1).
We also assume that the network is sparse, namely for all blocks a, b ∈ [K] we have

fab(x) = (1− pab)δ0(x) + pabf
∗
ab(x), (4.6)

where f ∗
ab is a probability density with no mass at zero. Finally, we suppose that

the sets of distributions {f ∗
ab} and {ha} belong to two exponential families. More

precisely, we have (with respect to the appropriate measure)

f ∗
ab(x) = e<θab,x>−ψ(θkℓ) and ha(y) = e<ηa,y>−ϕ(ηk), (4.7)

50



where θkℓ, ηk are parameters and ψ, ϕ are two functions. In particular, ψ(θkℓ) =

logEfkℓe<θab,X> is the cumulant generating function of fkℓ. Let us denote µkℓ =

Efkℓ(X) = ∇ψ(θkℓ) and νk = Ehk(Y ) = ∇ϕ(ηk). We recall the following relationships
for the log-likelihood of exponential families (see for example [44, Equation 13])

− log f ∗
ab(x) = dψ∗(x, µab)− ψ∗(x),

− log ha(x) = dϕ∗(x, µa)− ϕ∗(x).
(4.8)

The following Lemma expresses the log-likelihoods of fab in terms of Bregman di-
vergences.

Lemma 2. Let fab be a probability density as defined in (4.6)-(4.7). For x, y ∈ (0, 1),
let dKL(x, y) be the Kullback-Leibler divergences between Ber(x) and Ber(y), and let
H(x) = x log x+ (1− x) log(1− x). Then,

− log fab(x) = dKL (x∥pkℓ) + cdψ∗(x, µab)− cψ∗(x)−H(c),

where c = 1(x ̸= 0).

Proof. To express log fab(x), we first note that

log fab(x) =

log(1− pab) if x ̸= 0,

log pab + log(f ∗
ab(x)) otherwise.

This can be rewritten as

log fab(x) = (1− c) log(1− pab) + c log pab + c log(f ∗
ab(x)),

where c = 1(x ̸= 0). The result follows by adding and subtracting H(b) in the
previous expression and using (4.8).

Lemma 3. Let fab be a probability density as defined in (4.6)-(4.7). Suppose that
pab = Θ(δ) for all a, b, where δ ≪ 1. We have

(1− t)Dt(fac∥fbc) = (1 + o(1))
[
tpac + (1− t)pbc − ptacp1−tbc e−Jψ(θab:θbc

]
where Jψ(θab∥θbc) = tψ(θac + (1− t)ψ(θbc)− ψ(tθac + (1− t)θbc).

Proof. Using a Taylor expansion, we have

(1− t)Dt(fac∥fbc) = log

[
(1− t)t(1− q)1−t + ptq1−t

∫
(f ∗)t(g∗)1−t

]
= tp+ (1− t)q − ptq1−t

∫
(f ∗)t(g∗)1−t + o(δ),
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and we finish the proof using
∫
(f ∗)t(g∗)1−t = Jψ(θab∥θbc) (see example [45]).

4.2.2 Clustering by iterative likelihood maximisation

Assuming that X, Y come from the model (4.2), with probability distributions given
by (4.6)-(4.7). Let A be a binary matrix such that Aij = 1(Xij ̸= 0). We have

− logP(X, Y | z) =
∑
i

{
1

2

∑
j ̸=i

[
dKL(Aij, pzizj) + Aijdψ∗

(
Xij, µzizj

)]
+ dϕ∗(Yi, νzi)

}
+ c(X, Y )

where c(X, Y ) is some function of X, Y only. Denoting Z ∈ {0, 1}N×K the one-hot
membership matrix such that Zik = 1(zi = k), we observe that pzizj =

(
ZpZT

)
ij
,

µzizj =
(
ZµZT

)
ij

and νzi =
(
ZTν

)
i
. Thus, up to some constants we have

− logP(X, Y | z)

=
∑
i

{
1

2

∑
j

[
dKL

(
Aij,

(
ZpZT

)
ij

)
+ Aijdψ∗

(
Xij,

(
ZµZT

)
ij

)]
+ dϕ∗

(
Yi,
(
ZTν

)
i

)}

=
∑
i

{
1

2
dKL

(
Ai·,

(
ZpZT

)
i·

)
+

1

2
Aijdψ∗

(
Xi·,

(
ZµZT

)
i·

)
+ dϕ∗

(
Yi,
(
ZTν

)
i

)}
(4.9)

where by abuse of notation we denote dψ∗(A,B) =
∑

i

∑
j dψ∗(Aij, Bij) for two

matrix A,B.
Following the log-likelihood estimator established in (4.9), we first propose an

iterative clustering algorithm that aims at classifying each node in the community
maximising P (X, Y | z−i, zi = k), the likelihood that node i is in the community k gi-
ven the community labels of the other nodes z−i. Denoting by Z(ik) the membership
matrix obtained from Z by replacing the community of node i to k, we have

Lik(Z
(ik)) =

1

2
dKL

(
Ai·,

(
ZpZT

)
i·

)
+

1

2
Aijdψ∗

(
Xi·,

(
ZµZT

)
i·

)
+ dϕ∗

(
Yi,
(
ZTν

)
i

)
.

(4.10)

Finally, the probabilities p = p(X,Z) and the means µ = µ(X,Z) and ν = ν(Y, Z)

are given by
p(X,Z) =

(
ZTZ

)−1
ZTAZ

(
ZTZ

)−1

µ(X,Z) =
(
ZTZ

)−1
ZTXZ

(
ZTZ

)−1

ν(Y, Z) =
(
ZTZ

)−1
ZTY.

(4.11)

We note that the matrix inverse
(
ZTZ

)−1 can be easily computed since ZTZ is a
k-by-k diagonal matrices. We summarise this in Algorithm 7.
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Algorithm 7 Bregman hard clustering of node attributed SBM
Require: : Node-pairs interactions X ∈ X n×n, node attributes Y ∈ Yn, convex

functions ψ∗, ϕ∗, initial clustering Zinit ∈ Zn,K .
do

Let Z = Zinit and compute p, µ, ν according to (4.11)
for each i = 1, · · · , N do

Find k∗ = argmax
k∈[K]

Lik
(
Z(ik)

)
, where Lik

(
Z(ik)

)
is defined in (4.10)

Let Znew
ik = 1(k = k∗) for all k = 1, · · · , K

Let Z = Znew

Update p, µ, ν according to (4.11)
while Not convergence
Return Node-membership matrix Z

Alternatively, one can state the objective function and try to optimize the ex-
pected divergence defined in (4.12), just like in (3.8):

min
n∑
i=1

K∑
k=0

τi,k

[
dϕ(Yi, νk) +

n∑
j=1

K∑
k=0

{dKL(Ai,j, pk,l) + Ai,jdψ∗(Xi,j, µk,l)}

]
s.t.

pk,l =

∑
i ̸=j τ̂ikτ̂jℓAij∑
i ̸=j τ̂ikτ̂jℓ

, µ̂kℓ =

∑
i ̸=j τ̂ikτ̂jℓXij∑
i ̸=j τ̂ikτ̂jℓ

and ν̂k =

∑
i τ̂ikYi∑
i τ̂ik

K∑
k=0

τi,k = 1∀i

n∑
i=1

τi,k ≥ 1∀k

τi,k ≥ 0

(4.12)

However the above formulation is non-convex, since the Bregman divergences
are not generally convex with respect to the second argument. This makes common
algorithms from Mixed Integer Programming very slow even for small instances and
why we adopt EM instead.

Finally, one can also define the soft clustering algorithm. To begin with, we note
that equation (4.6) can be written as an exponential family:

fab(x) = (1− pab)δ(Aij)[pabgab(Xij)]
δ(Aij−1)

= exp {δ(Aij) log(1− pab) + δ(Aij − 1)[log(pab) + log(gab(Xij))]}

= exp {− dKL(Aij, pab)− Aijdψ∗(Xij, µab)}.

(4.13)
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Hence, we can thus write the likelihood as follows:

P (X, Y | z) =
∏

1≤i<j≤n

fzizj(Xij)
n∏
i=1

hzi(Yi)

= exp {−
∑
i,j

[
dKL(Aij, pzi,zj) + Aijdψ∗(Xij, µzi,zj)

]
− dϕ∗(Yi, νzi)}.

(4.14)
In order to obtain the conditional distribution p(z|X, Y ), we can use the Bayes for-
mula p(z|X, Y ) = p(X, Y |z)p(z)/p(X, Y ). Hence, the E-step of the EM-Algorithm
will proceed as follows:

p(zi = a|X, Y, z−i) ∝ p(X, Y |z−i, zi = a)p(zi = a)

∝ πa exp

{
−
∑
i,j

[
dKL(Aij, pa,zj) + Aijdψ∗(Xij, µa,zj)

]
− dϕ∗(Yi, νa)

}
.

(4.15)
We note that the inside sum on the nodes i, j remains constant, except for the
entries on i when changing its community. This leads us to the following formula,
with τ̂ia = p(zi = a|X, Y ) and a little abuse of notation:

dnet(j) = dKL(Aij, pa,zj) + Aijdψ∗(Xij, µa,zj) + dKL(Aij, pzj ,a) + Aijdψ∗(Xij, µzj ,a)

τ̂ia ∝ πa exp{−
∑
j

[dnet(j)]− dϕ∗(Yi, νa)}

In practice, in order to have a stable exponent, we simply add a constant ci for every
node:

ci = min
a
{
∑
j

[dnet(j)] + dϕ∗(Yi, νa)}

τ̂ia ∝ πa exp {−
∑
j

[dnet(j)]− dϕ∗(Yi, νa) + ci} (4.16)

Finally, given the conditional probabilities, we can update the distribution parame-
ters as follows:

π̂k =
1

n

∑
i

τ̂ik, µ̂kℓ =

∑
i ̸=j τ̂ikτ̂jℓXij∑
i ̸=j τ̂ikτ̂jℓ

and ν̂k =

∑
i τ̂ikYi∑
i τ̂ik

. (4.17)

The steps are described in Algorithm 8. For the convergence we just check if
either the number of iterations is reached or the loglikelihood between two sucessive
steps is lower than an arbitrary epsilon: |l(τ̂new) − l(τ̂old)| ≤ ϵ, where the total
loglikelihood is l(τ̂) =

∑
i log

∑
k τ̂ik.
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Algorithm 8 Bregman soft clustering of node attributed SBM
Require: : Node-pairs interactions X ∈ X n×n, node attributes Y ∈ Yn, convex

functions ψ∗, ϕ∗, initial clustering Zinit ∈ Zn,K .
do

for each i = 1, · · · , N do
update τia according to (4.16)

update π,µ and ν according to (4.17)
while Not convergence

4.2.3 Initialisation

To provide a good initialisation for Algorithm 7, we first estimate two clustering
Znetwork (resp. Zattributes) obtained by applying Algorithm 7 (starting with a random
initialisation) on the network (resp. on the attributes) alone. We note that, given an
estimated clustering Ẑ, we can compute µ̂(X, Ẑ) and ν(Y, Ẑ) as in (4.11), and hence
get estimates f̂ab and ĥa of the probability densities fab and ha. Since Theorem 3
highlights the role of the Chernoff-Hellinger divergence to assess the difficulty of
clustering, we proceed as follows:

• Use Znetwork to compute numerically

Cnetwork = min
a̸=b

sup
t∈(0,1)

(1− t)
K∑
c=1

πcDt (fbc∥fac)

• Use Zattributes to compute numerically

Cattribute = min
a̸=b

sup
t∈(0,1)

(1− t)
[
1

n
Dt (ha∥hb)

]

• Return the Znetwork if Cnetwork > Cattributes, otherwise return Zattributes.

Alternatively one can also initialize using the communities found by spectral
clustering in algorithm 9. The idea of using spectral clustering as initialization for
Kmeans is debated in [46], which shows that by doing this helps the Kmeans objec-
tive function escape from local minima. We hence adapt this idea using the Bregman
Divergences to compute a similarity score between data points. For network, one
can use as the similarity matrix the graph itself or a known metric from literature,
such as Jaccard index. For the data, one can use exp{−dϕ(yi, yj)} for every pair of
data points i and j and ϕ the specified divergence.

Since the Bregman Divergences are not symmetric in general, one can make
the symmetric version by doing Dϕsym = dϕ(yi, yj) + dϕ(yj, yi)/2. One can take
the average of both network and attributes similarities to compute a single matrix,
however the assumption that the graph and attributes come from different manifolds

55



work better in practice. That’s why it’s preferable to compute two distinct laplacian
eigenmaps and then concatenate their embeddings. The implementation of such
algorithms can be found here 1.

Algorithm 9 Spectral clustering on concatenated matrix
Require: : Observed network data X, attributes Y , a (symmetric) kernel function

Φ, number of clusters K.
1: Do some preprocessing on X to obtain X̃ (e.g., compute Jaccard similarity

between the neighbourhood of different nodes, normalize by degrees, or do
nothing);

2: Let Ỹ ∈ Rn×n
+ such that Ỹij = K(Yi, Yj)

3: Compute the Laplacian of each matrix, resulting in X̃L and ỸL
4: (i) Let the eigendecomposition of X̃L be X̃L =

∑n
i=1 λiuiu

t
i, with λ1 ≤ λ2 ≤

· · · ≤ λn and eigenvectors u1, · · · , un. Denote U = (u1, · · · , uK) ∈ Rn×K the
leading eigenspace, and Λ = (λ1, · · · , λK) ∈ RK×K the leading eigenvalues.

5: (ii) Similarly, let ỸL =
∑n

i=1 σiviv
T
i , with σ1 ≤ · · · ≤ σn. Denote V =

(v1, · · · , vK) and Σ = (σ1, · · · , σK).
6: (iii) Apply k-means on the rows of [UΛ, V Σ] ∈ Rn×2K , where [·, ·] denotes the

concatenation between two matrices.
7: Return estimated clusters Ẑ obtained by k-means at step (iii).

1https://github.com/FelipeSchreiber/BregmanClustering
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Chapter 5

Evaluation

In this chapter we compare our proposal with others in the literature and with
traditional algorithms. In order to achieve this goal, the evaluation was done with
both synthetic and real data. Also, a number of metrics were studied. This chapter
is hence divided into two parts, one that analyses under synthetic data sets and
another the real ones, but first we bring a couple of metrics.

5.1 Metrics

The first thing before thinking about metrics is, what I would like to measure? What
would be a perfect score?

Since we’re dealing with clustering algorithms, that are unsupervised by nature,
the most common approach is to measure the similarity between clusterings, or how
close two sets of labelings are. Also, since we’re dealing with sets, the ordering
doesn’t matter in this case, as opposed to classification metrics or recommendation
ones. Another aspect is that each set inside a clustering may have different sizes,
so we would also like that our metric is unbiased by the size of them. Thereby
we present a couple of known ways to compute such similarity, and discuss their
shortcomings.

5.1.1 Mutual Information and variants

As the name suggests, it is the normalization of the Mutual Information (MI) score
to scale the results between 0 (no mutual information) and 1 (perfect correlation).
But, as pointed out by Mark Newman et al. in [47], it’s biased. Let’s see why.

Let’s first describe the mutual information. Mathematically, it’s given by:

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

ln
|Ui ∩ Vj|N
|Ui||Vj|
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, with |Ui| and |Vj| denoting the number of points in cluster Ui and Vj respectively.
The main question is, what would be a good value of Mutual Information? A value
of 10 can be optimal in an application, but terrible for others. To have a comparable
measure, one normally take the normalized version, which is:

NMI(U, V ) =
MI(U, V )

avg(H(U), H(V ))

The last formulation has some drawbacks. First, it has a bias towards labelings
with too many distinct label values. For example, an algorithm that outputs each
data point as a community will lead to the highest score of mutual information,
while we intuitively expect this output to have no information whatsoever. Secondly,
the normalization factor depends on both the ground truth and the output, which
may mislead rankings. Another major problem is that the expectation of mutual
information is greater than zero, which again is counter intuitive because the random
labeling would be expected to be zero. One possible alternative to this last problem
is to take the adjusted score [48] instead:

AMI(U, V ) =
MI(U, V )− E(MI(U, V ))

avg(H(U), H(V ))− E(MI(U, V ))

For the other shortcomings many proposals exist, for example normalizing by a mea-
sure that depends only on ground truth [47] or take the reduced mutual information
which adds a normalization term [49].

5.1.2 Rand Index

The Rand Index [13] is another similarity measure between two clusterings. It
consider all pairs of samples and take the ratio between the number of agreeing
pairs and total:

RI =
Agreeing pairs

Total pairs

In order to factor out the random labelings, normally one subtracts the expected
value, giving the adjusted score:

ARI =
RI − E[RI]

max(RI)− E[RI]

5.1.3 Sokal&Sneath

This metric was first introduced in [50] and later debated on [51]. For notation
purposes, consider the 2 × 2 pair matrix K of all sample pairs of two partitions U
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and V. Let’s discuss the meaning of each entry:

1. K11 is the number of pairs in the same cluster

2. K00 is the number of pairs that are in different clusters

3. K10 is the number of pairs that are in the same cluster in U but in different
clusters in V

4. K01 is the number of pairs that are in the same cluster in V but in different
clusters in U

With this definition in mind, we’re to establish the Sokal&Sneath metric:

1

4

( K11

K11 +K10

+
K11

K11 +K01

+
K00

K00 +K10

+
K00

K00 +K01

)
,

which is the average of precision, recall and their inverted counterparts.

5.1.4 Pearson Correlation Coefficient

It is one of the most practical indices to measure similarity, although not very used
for clustering similarity measure. In terms of K, it is expressed by the following
formula:

K11K00 −K10K01

(K00 +K01)(K00 +K10)(K11 +K01)(K11 +K10)

Interestingly, according to [51] the best agreeing indices are Sokal&Sneath and Pe-
arson. They also satisfy many properties. See image 5.1 bellow.

Figure 5.1: Metrics properties. R-Rand Index, AR-Adjusted Rand Index, J-
Jaccard, W-Wallace, D-Dice, CC-Pearson Correlation, S&S-Sokal&Sneath and CD-
Correlation Distance respectivelly. Taken from [12].
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Figure 5.2: Similarity metric properties. AMI is often preferred over NMI because
it’s unbiased towards the number of clusters. Taken from [12].

5.2 Datasets

Finally, we’re ready to talk about the datasets used to evaluate our model. They
are divided between real and synthetic data. Let’s see them.

5.2.1 Real data sets

The pytorch geometric 1 provides some citation networks where n papers are lin-
ked by m edges. Each paper belongs to one of the K classes and is represented
by a keyword denoted by a d-dimensional 0/1-valued word vector indicating the
absence/presence of the corresponding word from the dictionary. However, some
processing was needed since some nodes are disconnected. We remove them for the
sake of simplicity and, due to high dimensionality of the attributes, we also reduce
them to 10 most meaningful features, according to the Chi-square test. The choice of
this test is just to preserve the original data and simplicity, although other methods
could be used, such as Principal Components Analysis (PCA) or t-SNE [52].

• Cora: n = 2708, m = 10556, d = 1433 and K = 7 (machine learning fields);

• Citeseer: n = 3327, m = 9104, d = 3703 and K = 6;

• Wiscosin: n = 251, m = 515, d = 1703, K = 5;

• Texas: n = 183, m = 325, d = 1703, K = 5;

• Cornell: n = 183, m = 298, d = 1703, K = 5;

The Chi-square measures the correlation of each feature and the target vari-
able, i.e., the class. We select the 10 highest scores after computing the metric.

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Mathematically, it is:

χ2(D, t, c) =
∑

ew∈{0,1}

∑
ec∈{0,1}

(Newec − Eewec)2

Eewec
,

where N is the observed frequency, E the expected frequency, ew takes value 1 if the
paper contains word w and 0 otherwise and ec takes the value 1 if the paper is in
class c and 0 otherwise.

Figure 5.3: Class distribution of each dataset
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5.2.2 Synthetic datasets

Since the community recovery depends on both the attributes and the network,
our tests were thought to stress the proposed algorithm and his performance when
varying the strength of network signal and the attributes signal. The network and
attributes are generated independently. The network comes from a Stochastic Block
Model, with edge weights coming from a distribution whose mean depends on the
node classes of interation. In a broad sense the synthetic datasets have the following
parameters to be set:

• pin e pout SBM parameters

• The size of each community

• The distribution from which the attributes and weights come from

• The circle radius

• A K ×K matrix to establish the means of weight distribution between each
community pair

Since we make different assumptions about attributes distribution depending on
the divergence selected, we also study if there’s much performance difference when
changing the divergence. As a summary, we perform the following tests:

• We fix the pout SBM parameter and the circle radius to draw the features
center. Vary the pin parameter

• We fix the pout and pin SBM parameters. Vary the circle radius

• Draw graph weights from a specific distribution and assume other ones

• Draw attributes from a specific distribution and assume other ones

5.3 Results

5.3.1 Synthetic Datasets

Finally we show a couple of results concerning our algorithms. In Figure Figure 5.5,
we compare the performance of Algorithm 7 in terms of exact recovery (fraction
of times the algorithm correctly recovers the community of all nodes) with the
theoretical threshold for exact recovery proved in the paper (red curve in the plots)
in two settings: Figure 5.5a shows binary weight with Gaussian attributes, and
Figure 5.5b shows zero-inflated Gaussian weights with Gaussian attributes. Solid
black and white squares represent fraction zero (no trial was recovered exactly) and
one (all trials were exactly recovered) over 50 trials.
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Figure 5.4: (a)We fix pout = 5 logn
n

and r = 1. Vary pin = a logn
n

(b) We fix pout = 5 logn
n

, and pin = 8 logn
n

. Vary radius r.
Both experiments: Gaussian attributes, unweighted graph, n = 600, K = 3
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(a) Binary network with Gaussian attri-
butes
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(b) zero-inflated Gaussian weights with
Gaussian attributes.

Figure 5.5: Phase transition of exact recovery. Each pixel represents the empirical
probability that Algorithm 1 succeeds at exactly recovering the clusters (over 50
runs), and the red curve shows the theoretical threshold.
(a) n = 500, k = 2, = Ber(αn−1 log n), = Ber(n−1 log n). The attributes are 2d-
spherical Gaussian with radius (±r

√
log n, 0) and identity covariance matrix.

(b) n = 600, k = 3, = (1 − ρ)δ0 + ρNor(µ, 1), = (1 − ρ)δ0 + ρNor(0, 1) with
ρ = 5n−1 log n. The attributes are 2d-spherical Gaussian whose means are the
vertices of a regular polygon on the circle of radius r

√
log n.

Robustness to the choice of dψ∗ and dϕ∗

We then show in Figure 5.6 that using a divergence (distribution) for edge weights
(Figure 5.6a and node attributes (Figure 5.6b different from the distribution used to
generate the data does not impact the results. We note that a similar observation
was done in previous papers using Bregman divergence for clustering [14, 44].

Finally, we compare Algorithm 7 with other algorithms presented in the litera-
ture. More precisely, in Figure 5.7 we compare Algorithm 7 with the V-EM algorithm
of [15] and the algorithm of [14]. Both of these algorithms are designed for dense
networks, which explains why Algorithm 7 has overall better performance.
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Figure 5.6: Performance of Algorithm 7 when dψ∗ or dϕ∗ do not correspond to the
model that generated the data. The different curves show the Adjusted Rand Index
(ARI) [13] averaged over 20 realisations with the standard deviations as error bars.
(a) n = 400, k = 4, = (1 − p)δ0(x) + pPoi(µin) and = (1 − q)δ0(x) + qPoi(5), with
p = 0.04 and q = 0.01. Attributes are 2d-Gaussians with unit variances and mean
equally spaced the circle of radius r = 2.
(b) n = 400, k = 2, = (1−p)δ0(x)+pNor(2, 1) and = (1− q)δ0(x)+ qNor(0, 1), with
p = 0.04 and q = 0.01. Attributes are Poisson with means ν1 (for nodes in cluster
1) and 3 (for nodes in cluster 2).
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Figure 5.7: Comparison of Algorithm 1 with algorithms of [14] and [15] Error bars
show the standard deviations. Results are averaged over 25 realisations. Attributes
are 2d-spherical Gaussian attributes with radius (±1, 0).
(a) n = 100, k = 2, = (1− pin)δ0 + pin Poi(5), = (1− 0.03)δ0 + 0.03Poi(1).
(b) n = 100, k = 2, = (1− 0.07)δ0 + 0.07Poi(µin), = (1− 0.04)δ0 + 0.04Poi(1).

5.3.2 Real Datasets

It’s known that the k-means objective function is non convex, but a experiment
suggested by [46] shows that by initializing with the results from spectral clustering
(SC) helps avoidance of local minima, although it alone (SC) isn’t the best option.
We further do as suggested, and explored the initialization with such method, fol-
lowed by the MLE optimization routine. As shown in table bellow, we were able to
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improve the results a lot with such procedure.
Finally we show a couple of results comparing the algorithms with different ini-

tializations. In particular, we study the initialization inspired in the spectral theory.
For such experiment, we consider traditional algorithms, such as Leiden/Spectral
Clustering for network only, Kmeans and GMM for attributes only, and ours that
considers both. For spectral methods considering both sources of information (SC_-
jaccard, SC_gaussian_1 and SC_gaussian_2) we do as following:

• SC_jaccard: Computes a network simmilarity matrix using Jaccard index and
compute an elementwise average with the attributes simmilarity matrix with
euclidean divergence in the formula exp{−dϕ(yi, yj)}.

• SC_gaussian_1: Computes a network simmilarity matrix using euclidean
distance from adjacency matrix, i.e. exp{−||Ai: − Aj:||22}. Compute an ele-
mentwise average with the attributes simmilarity matrix as before.

• SC_gaussian_2: Computes a network simmilarity matrix using euclidean dis-
tance from adjacency matrix, i.e. exp{−||Ai: − Aj:||22}. Compute attributes
simmilarity matrix as before. The spectral embedding is done independently,
instead of previous methods that computes a single vector of length K for each
node. The final step is to concatenate both network and attributes embedding,
resulting in an embedding of length 2K, and apply a clustering algorithm.

• Hard and Soft clustering + SC: Here we apply using SC_gaussian_2 procedure
as initialization, and latter apply the MLE as we’ve discussed.

We conclude from tables 5.15.2 that in fact applying the spectral initialization
the results are improved, as well as it’s variance. We note that the spectral method
followed by MLE performs better than MLE or SC alone, which is expected from
[46] experiments. With that being said, we further highlight the following points:

• According to S&S and CC metrics, the method using Soft clustering with Spec-
tral Clustering for initialisation outperformed the hard clustering counterparts
in most of datasets - except for Cornell. The same is true if we analyze the
metrics of table 5.1, but since we’re dealing with unbalanced data the former
metrics are more accurate.

• Surprisingly, in Texas dataset the soft clustering with SC under performed the
soft version with default initialization according to NMI and AMI metrics, but
not according to others (ARI, S&S and CC). This may be because of bias in
mutual information computation.
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Table 5.1: Real data experiments: comparison with Normalized Mutual Information,
Adjusted Mutual Information and Adjusted Rand Index

NMI NMI_std ARI ARI_std AMI AMI_std algorithm dataset
0.21346867984328521 0.006959179357894665 0.04479413540185353 0.005369659446045768 0.21135634120925575 0.0069790566603647715 both_hard CiteSeer
0.259581863786 0.0 0.20342453026007018 0.0 0.25792099609969127 0.0 both_hard+SC CiteSeer
0.2057177812598197 0.009085922866314907 0.0329162978696433 0.005583040602577974 0.20352780437873488 0.009122677164754447 both_soft CiteSeer
0.2833791032144337 0.0 0.23859320303131515 0.0 0.28180482922153743 0.0 both_soft+SC CiteSeer
0.24877777858489608 0.0 0.1672733317193305 0.0 0.24709597818740087 2.7755575615628914e-17 attSBM CiteSeer
0.1819581463164466 0.006296970340672214 0.02460972125165921 0.0036210198507557975 0.17965366186418713 0.006316614542094532 leiden(init) CiteSeer
0.220997661910293 0.03177807037423423 0.13342173106924732 0.03752675767661495 0.2191346656032629 0.03192086866874422 GMM(init) CiteSeer
0.18988696819854478 0.0 0.08904461595553734 0.0 0.1879098163809906 0.0 kmeans CiteSeer
0.012793775010289282 1.734723475976807e-18 -0.0006230169155613686 0.0 0.008500445718461149 0.0 SC CiteSeer
0.26304303525973327 0.0 0.18140350178924042 0.0 0.26138914544610764 0.0 SC_jaccard CiteSeer
0.2599317923771575 0.0 0.18060143478463445 0.0 0.25827614638374313 0.0 SC_gaussian_1 CiteSeer
0.24145296785311604 0.0 0.1630151078812451 0.0 0.23974973355067347 2.7755575615628914e-17 SC_gaussian_2 CiteSeer
0.27785498128988906 0.0207650324303173 0.058619112451302614 0.010160345728454964 0.2747177806001649 0.020842078861655646 both_hard Cora
0.3417992721235633 0.0 0.12249541627871334 0.0 0.33899526513023726 0.0 both_hard+SC Cora
0.4081799108822439 0.0708220940698616 0.2398723221251137 0.07448550143187115 0.40593027762237044 0.07112371187724759 both_soft Cora
0.4471667745956017 0.0 0.2608830984813428 0.0 0.44509426461725143 5.551115123125783e-17 both_soft+SC Cora
0.30797879718191334 0.0 0.08764904312131717 0.0 0.30499504792253546 0.0 attSBM Cora
0.36322871063843426 0.023209400067515967 0.18831886377226945 0.018933189074597557 0.3606845787552606 0.023306534490622047 leiden(init) Cora
0.2743056631982082 0.020222848204216784 0.057784189836877733 0.00965157744954359 0.2711472390703906 0.020302220735797728 GMM(init) Cora
0.24921799114751925 0.0 0.04287224332920651 0.0 0.2459603739381418 0.0 kmeans Cora
0.01378077197743811 1.734723475976807e-18 -0.0028806004598656916 0.0 0.006487747603360862 0.0 SC Cora
0.3309619309290932 0.0 0.11902880585670625 0.0 0.32827325048305805 0.0 SC_jaccard Cora
0.33051741067821533 0.0 0.09811415445365605 0.0 0.32776220502680947 0.0 SC_gaussian_1 Cora
0.2918152984372345 0.0 0.06894745133323943 0.0 0.28867755063082234 0.0 SC_gaussian_2 Cora
0.11094695084494213 0.011931796813416317 0.026993491785026674 0.009203995835303801 0.0811139740953358 0.01234501360830146 both_hard Cornell
0.5509098955046718 0.0 0.489240576894001 5.551115123125783e-17 0.5337959525296577 0.0 both_hard+SC Cornell
0.21979254856757519 0.06867082577539528 0.07287847196922739 0.04132719432247644 0.19278609285099185 0.07013724886107328 both_soft Cornell
0.5088401882449745 0.0 0.44645097338778583 0.0 0.4898984141215868 5.551115123125783e-17 both_soft+SC Cornell
0.5143417710672298 0.0 0.46455091039122304 5.551115123125783e-17 0.4957462872066614 0.0 attSBM Cornell
0.07549604535943057 0.004029461404109076 -0.006270664213819011 0.00469497159281923 0.043225387696503026 0.004438060917145745 leiden(init) Cornell
0.4304528869278582 0.020707320765794145 0.36941195137671745 0.01234370750698467 0.40792968373182237 0.022056458138317914 GMM(init) Cornell
0.45626820799150936 0.0 0.33426813618645923 0.0 0.4335960930298411 0.0 kmeans Cornell
0.08217155290042287 0.0 0.014029998338900711 0.0 0.043872352857615975 0.0 SC Cornell
0.40171522702198664 0.0 0.28324784831172045 0.0 0.38079630539968035 0.0 SC_jaccard Cornell
0.42069646911847436 0.0 0.4202301844001294 0.0 0.3991622136905946 0.0 SC_gaussian_1 Cornell
0.4917269616758416 5.551115123125783e-17 0.42219523796592534 0.0 0.47188941033398796 5.551115123125783e-17 SC_gaussian_2 Cornell
0.13014289152043407 0.08116643355980985 0.1358950753610042 0.06803917690089009 0.10068374302457425 0.083862642481019 both_hard Texas
0.3667595189594293 0.0 0.32582633206400596 0.0 0.3444871880846265 0.0 both_hard+SC Texas
0.403867579958915 0.007918921931131438 0.3366708594648505 0.07371110877422221 0.38381476733900155 0.008592901600580932 both_soft Texas
0.3701127897012879 0.0 0.4509939751936239 0.0 0.34740756723620586 0.0 both_soft+SC Texas
0.3730509643591937 0.0 0.448710892830522 0.0 0.350581649311867 0.0 attSBM Texas
0.04408124931574434 0.0013042320016693086 0.009405521227490972 0.003038764117383252 0.010324781569764664 0.0010058801381217298 leiden(init) Texas
0.3926014406173393 0.02549318752200398 0.4364180501902964 0.032529442937379735 0.3688722298029294 0.025714248885746378 GMM(init) Texas
0.43890884957969123 0.0 0.47808711551595595 5.551115123125783e-17 0.4166903523203039 0.0 kmeans Texas
0.015408869980161754 0.0 0.006779451645372704 8.673617379884035e-19 0.004710391630037535 0.0 SC Texas
0.39272825055941557 0.0 0.26606864308219275 0.0 0.3718143818618677 0.0 SC_jaccard Texas
0.3307901598755094 0.0 0.3576843465536411 0.0 0.3066962881984197 0.0 SC_gaussian_1 Texas
0.3613123759968967 0.0 0.35077469205769934 0.0 0.33896748511678554 0.0 SC_gaussian_2 Texas
0.21305073595140683 0.016074208945793967 0.15569619820019592 0.03285918332253669 0.1936516619407785 0.016396796054837556 both_hard Wisconsin
0.4144623723744895 0.0 0.4003927116254896 0.0 0.3990953700747937 0.0 both_hard+SC Wisconsin
0.3360835802651604 0.0236168453307472 0.27765407194970615 0.023415468677856658 0.31999013726365433 0.024416419116558837 both_soft Wisconsin
0.49274513881409626 0.0 0.4326935905448816 0.0 0.48018272253181904 5.551115123125783e-17 both_soft+SC Wisconsin
0.48094755335407 0.0 0.433093827984973 0.0 0.4670846673844187 0.0 attSBM Wisconsin
0.04204616233647699 0.003964627326648053 -0.006794231613112098 0.015808351197907265 0.016202767836663603 0.003943757708596698 leiden(init) Wisconsin
0.38661693815379183 0.01138072198491444 0.354822983896564 0.028804439034231168 0.3699476125318763 0.01160727324214335 GMM(init) Wisconsin
0.44218180411986185 0.0 0.36970073266446146 0.0 0.426288413190181 5.551115123125783e-17 kmeans Wisconsin
0.08753904874115358 0.0 0.04943644344228711 0.0 0.0611052470801942 6.938893903907228e-18 SC Wisconsin
0.3558502657083752 0.0 0.23054042011933001 0.0 0.339567146497894 0.0 SC_jaccard Wisconsin
0.37953463699234263 0.0 0.33179352501109804 0.0 0.36334295410462714 0.0 SC_gaussian_1 Wisconsin
0.47718994060731534 5.551115123125783e-17 0.41434495522947035 5.551115123125783e-17 0.4631205605104495 0.0 SC_gaussian_2 Wisconsin

• Apart from Texas dataset in which Kmeans is the best, the methods conside-
ring both sources of information did better. In this particular one, Kmeans got
S&S score of 0.74, while our soft + SC method is the second best with 0.72.
In this same dataset the difference between GMM and Leiden is the biggest,
which may suggest a bias favorable to attributes only methods.

• Apart from Cora dataset, all datasets seems to have more attribute information
in comparison to network information, since GMM (attributes only method)
often does better than Leiden (network only)

• Apart from Winscosin dataset in which according to ARI the attributed SBM
is the best, all the metrics reached a consensus of the best performing algorithm
on every experiment.
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Table 5.2: Real data experiments: comparison with Sokal&Sneath and Correlation
Coefficient metrics

S&S S&S_std CC CC_std algorithm dataset
0.5300494085670995 0.003605798597739101 0.05800499648739317 0.006960312854227995 both_hard CiteSeer
0.6024645307639732 0.0 0.20451698681997663 0.0 both_hard+SC CiteSeer
0.5232144117101322 0.0036642837741560894 0.044840621275832326 0.0070770617339243795 both_soft CiteSeer
0.6193347299474888 0.0 0.23864739360285547 0.0 both_soft+SC CiteSeer
0.5844213646796723 0.0 0.1684168191553715 0.0 attSBM CiteSeer
0.5181076441692193 0.0027518903892251104 0.035023381509223926 0.005331998673818602 leiden(init) CiteSeer
0.5705951521357389 0.01779584341522195 0.13944442268353266 0.03577433198904634 GMM(init) CiteSeer
0.5501554634648966 0.0 0.0979837358951223 0.0 kmeans CiteSeer
0.4957825650088162 0.0 -0.005115736264428648 0.0 SC CiteSeer
0.591672006173999 0.0 0.18282033659043864 0.0 SC_jaccard CiteSeer
0.5911113926174268 0.0 0.18178198469398982 0.0 SC_gaussian_1 CiteSeer
0.5824049230338664 0.0 0.16432613318657788 0.0 SC_gaussian_2 CiteSeer
0.5355439242743328 0.0061474266091625105 0.06892920009476358 0.011922553299823752 both_hard Cora
0.5685312212956654 0.0 0.13404797824606526 0.0 both_hard+SC Cora
0.621415931227131 0.036859495152658135 0.24206236261735786 0.07387594997524789 both_soft Cora
0.6314235770136144 0.0 0.26231353709828864 0.0 both_soft+SC Cora
0.5517199543626476 0.0 0.10053095995628084 1.3877787807814457e-17 attSBM Cora
0.6019480804748347 0.009781445312013753 0.20043973452267255 0.019382358842140207 leiden(init) Cora
0.5350495652676974 0.005821772362574524 0.06796871819880543 0.011293645226999329 GMM(init) Cora
0.5261459359896783 0.0 0.05068206132120533 6.938893903907228e-18 kmeans Cora
0.48575253125847667 0.0 -0.019674582817118372 0.0 SC Cora
0.5649320589310372 0.0 0.12749531617805906 0.0 SC_jaccard Cora
0.5553561601326535 0.0 0.10815241562893792 0.0 SC_gaussian_1 Cora
0.5415292386372659 0.0 0.08057677787087981 0.0 SC_gaussian_2 Cora
0.5136161379431157 0.004658523136779102 0.02718712041475387 0.00929508769009895 both_hard Cornell
0.7511393439872041 0.0 0.5009025617377737 0.0 both_hard+SC Cornell
0.5380532572495016 0.022333799112504136 0.07584356889568729 0.044411102162164914 both_soft Cornell
0.7309438319978814 0.0 0.46036991971585256 0.0 both_soft+SC Cornell
0.7390860658705549 0.0 0.47676918498038645 5.551115123125783e-17 attSBM Cornell
0.49686284854126966 0.0023471214834847377 -0.006273686557305158 0.004694379341487168 leiden(init) Cornell
0.6939331954196233 0.006780905406228025 0.38632904716401184 0.013435312379842194 GMM(init) Cornell
0.6823871791537457 0.0 0.3628568888150612 0.0 kmeans Cornell
0.5171808294150825 0.0 0.03244322704356505 0.0 SC Cornell
0.6416394139538386 0.0 0.2832738178274195 0.0 SC_jaccard Cornell
0.7132759063445633 0.0 0.42580211957170483 0.0 SC_gaussian_1 Cornell
0.719844223417698 0.0 0.4380657236602191 5.551115123125783e-17 SC_gaussian_2 Cornell
0.5707435162291284 0.03546092916435076 0.14076723826311163 0.07054592332122592 both_hard Texas
0.6649669857624094 0.0 0.32953213859345204 0.0 both_hard+SC Texas
0.6692402403185131 0.037481321156439984 0.33832138613528306 0.07484925023694196 both_soft Texas
0.7271925640211407 0.0 0.4542508823527238 0.0 both_soft+SC Texas
0.7252013416642535 0.0 0.45026460289542614 0.0 attSBM Texas
0.5047595761873719 0.001536651275396924 0.0095078798344164 0.0030699512406807154 leiden(init) Texas
0.7210624240699741 0.01772437750670355 0.4419526337445682 0.03536184989470705 GMM(init) Texas
0.7424955998664785 0.0 0.4847729373333235 5.551115123125783e-17 kmeans Texas
0.5514254038717498 0.0 0.04232774777347764 0.0 SC Texas
0.6373341764479203 0.0 0.2736351617681436 0.0 SC_jaccard Texas
0.6792995717894718 0.0 0.3585275541853753 0.0 SC_gaussian_1 Texas
0.6784513734530753 0.0 0.3562634535875523 0.0 SC_gaussian_2 Texas
0.5809942156514938 0.016798869015950336 0.16085140140659873 0.03348483159124113 both_hard Wisconsin
0.7006960666909214 0.0 0.40126208623137005 0.0 both_hard+SC Wisconsin
0.6395089689635596 0.01183809504444334 0.27884136012871213 0.023627897675137528 both_soft Wisconsin
0.7199863595576359 0.0 0.4388325192714809 5.551115123125783e-17 both_soft+SC Wisconsin
0.7166843719353484 0.0 0.43333521810994335 0.0 attSBM Wisconsin
0.49659724197164373 0.007911212688508773 -0.006804196056809933 0.015820814024841208 leiden(init) Wisconsin
0.6775386858276904 0.014438321008999727 0.3550483441816756 0.028867977139559426 GMM(init) Wisconsin
0.6868962279261217 0.0 0.37346426015369016 0.0 kmeans Wisconsin
0.5257513529173141 0.0 0.05139668278729089 0.0 SC Wisconsin
0.6174958269000292 0.0 0.23428068693172058 0.0 SC_jaccard Wisconsin
0.6665143224055772 0.0 0.3328634068610344 0.0 SC_gaussian_1 Wisconsin
0.7071932265519517 0.0 0.41438159940698666 5.551115123125783e-17 SC_gaussian_2 Wisconsin
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Chapter 6

Conclusion

In this work we proposed a novel algorithm for community detection in node attri-
buted networks inspired by the Bregman Divergences and exponential families, in
an attempt to achieve the maximum likelihood estimator. Real data is not dense
in general, so we give an sparse formulation to the problem. Also, we generalized
many works by making use of exponential distributions, since most of them mainly
assume Gaussian distributions. The task of achieving MLE is an NP-hard combina-
torial problem, so we adopted an expectation maximization procedure to tackle the
problem. Other studies relied on belief propagation and MCMC procedures.

We compared our solution with others in the literature, an show the superiority
of our approach through several experiments with both synthetic and real data
by analysing many metrics. Many initialization procedures were studied, and a new
one that relies on the spectral theory was proposed. The new initialization proposed
empirically improved the results achieved by the MLE approach. Finally, we studied
briefly some concepts of information geometry and the dual flat structure induced
by Bregman divergences in the parameter space. We also showed how the natural
parameters can be useful to the optimization task, since it avoids plateaus, and gave
a geometric interpretation for MLE.

6.1 Future work

As future work, one can study other divergences and leverage them to cluster data.
Also, instead of minimizing the KL divergence of MLE, one can experiment repla-
cing by other divergences and check the impact of such change in the robustness of
solution, i.e., how outliers may affect the final estimator? Other interesting experi-
ments would be test the performance with other benchmarks, such as Lancichinetti-
Fortunato-Radicchi (LFR) [53] and Artificial Benchmark for Community Detection
[54] benchmarks.

Furthermore, one may also tackle the algorithm scalability. When dealing with
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large graphs, equation (4.10) is intractable due to the large number of factors in the
sum. In order to compute the divergences with respect to the graph, we consider a
stochastic version, defined as follows:

Lik(Z
(ik)) =

∑
j

[
dKL

(
Ai,j,

(
ZpZT

)
i,j

)
+ Aijdψ∗

(
Xi,j,

(
ZµZT

)
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)]
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(6.1)

where S is a set containing the node indexes sampled. By the law of large numbers,
the above expression converges to the exact value in (4.10). In order to update the
attribute means ν, the Bernoulli parameters p and the expected weight µ for each
community pair we do as follows for large graphs:

pa,b(X,Z) =
1

NaNb

∑
i,j

Ai,j1a,b(i, j) ≈
NaNb

|S|
∑
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|S|
,

(6.2)

where 1a,b(i, j) is an indicator function with value 1 when (zi, zj) = (a, b), Nx is the
size of cluster x, S is random sample of nodes i and j and E denotes a sample from
the set of edges. Optionally one could do the update the parameters at time t using
a learning parameter α as follows, leading to the mini-batch kmeans:

target = Na

∑
i∈S Yi1a(i)

|S|
νa(Y, Z)

t+1 = νa(Y, Z)
t + α[target− νa(Y, Z)t]

(6.3)

Algorithm 10 Monte Carlo Bregman hard clustering
Require: : Node-pairs interactions X ∈ Xn×n, node attributes Y ∈ Yn, convex functions ψ∗, ϕ∗, initial clustering
Zinit ∈ Zn,K .
Let Z = Zinit and compute p, µ, ν according to (4.11)
do

idx_sample ∼ U(0, N − 1)
for each i ∈ idx_sample do

Find k∗ = argmax
k∈[K]

Lik
(
Z(ik)

)
, where Lik

(
Z(ik)

)
is defined in (6.1)

Let Znew
ik = 1(k = k∗) for all k = 1, · · · ,K

Let Z = Znew

Update p, µ, ν according to (6.2)
while Not convergence
Return Node-membership matrix Z

The Monte Carlo version of our algorithm wasn’t implemented, so one could
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see other aspects such as the sampling size and convergence for this case. Finally,
our proposed algorithm optimizes in the expected parameters space, but when dea-
ling with Gaussians of unknown variance for example it would be interesting to see
whether optimizing in the natural space is better due to (expected) better conver-
gence properties.

To summarize, possible research directions are:

• Provide an scalable version of our algorithm, and compare with other bench-
marks in the literature.

• Use other divergences, so that we can generalize further to other distributions
that are not from exponential family, e.g. t-student and Cauchy. Study it’s
robustness when dealing with outliers. Also, other divergences can be used for
a pseudo MLE scheme by alternating projections in data and model manifolds.

• Propose and compare optimization routines in the natural space. Analyze the
quality of solution and convergence speed.

• Estimate the number of communities, e.g. by Integrated Completed Likelihood
(ICL).

• Assess how small each community must be to still have recovery.
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