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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)
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WITH APPLICATION TO THE BRAZILIAN STOCK MARKET

José de Paula Neves Neto

August/2023

Advisor: Daniel Ratton Figueiredo

Department: Systems Engineering and Computer Science

Transfer entropy is a relatively recent technique to measure the information
transfer or influence between two random events represented by their time series.
However, in many scenarios a set of events can mutually influence one another, both
directly and indirectly. This thesis proposes a methodology to characterize influ-
ence in such scenarios by building transfer entropy networks (weighted, directed)
and using classic network centrality metrics to determine top-ranked influential and
influenced nodes (events). The methodology is applied to the Brazilian stock mar-
ket exchange using 32 years of historical data (daily stock prices) to build a single
network as well as a sequence of networks over time (from overlapping time win-
dows). Among the many findings, the static analysis indicates that influence is not
moderately correlated with classic financial indicators (e.g., stock volume), and that
some stocks are both influential and influenced. Moreover, top-ranked influential
and influenced stocks are both very dynamic, in contrast to stocks that are top-
ranked according to classic financial indicators (e.g., stock volume). Last, a simple
analytical model to predict the mutual information between two events as well as
the transfer entropy is also proposed.

vii



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)
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Programa: Engenharia de Sistemas e Computação

A entropia de transferência é uma técnica relativamente recente para medir a
transferência de informações ou influência entre dois eventos aleatórios represen-
tados por suas séries temporais. No entanto, em muitos cenários, um conjunto
de eventos podem se influenciar mutuamente, tanto direta quanto indiretamente.
Esta tese propõe uma metodologia para caracterizar a influência em tais cenários
através da construção de redes de entropia de transferência (arestas ponderadas,
direcionadas) e usando métricas clássicas de centralidade de rede para determinar
os nós (eventos) influentes e influenciados mais bem classificados. A metodologia
é aplicada ao mercado de ações brasileiro usando 32 anos de dados históricos (co-
tações diárias das ações) para construir uma única rede, bem como uma sequência
de redes ao longo do tempo (a partir de janelas de tempo com sobreposição). En-
tre as muitas descobertas, a análise estática indica que a influência não está nem
moderadamente correlacionada com indicadores financeiros clássicos (por exemplo,
volume monetário) e que algumas ações são influentes e influenciadas ao mesmo
tempo. Além disso, as ações influentes e influenciadas mais bem classificadas são
muito dinâmicas, em contraste com as ações mais bem classificadas de acordo com
indicadores financeiros clássicos (por exemplo, volume monetário). Por fim, também
é proposto nesa tese um modelo analítico simples para prever a informação mútua
entre dois eventos, bem como a entropia de transferência.
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Chapter 1

Introduction

Influence is a fundamental concept in nature and society as all objects both exert and
suffer some kind of influence from one another. Human intuition says that climate
influences crop or the unemployment rate influences salary, for example. Although
it is an intuitive concept, a fundamental question arises already at the outset: what
is influence? Influence can be vaguely defined as the change in the dynamics of
an object in response to the change of dynamics in another object. This work will
address this central question and characterize very influential and very influenced
objects.

There are many situations in which the action of an object clearly affects the
behavior of another. This kind of relationship between objects is what we will refer to
as influence or dependence. Influence can also be seen as information, in particular
when one object influences another, one can say that the first object has passed
information to the second one. Thus, influence can be intuitively interpreted as
information transfer. An important question is determining if the dynamics of two
objects are related in some kind of dependence or influence. For example, does heart
beat rate influence blood pressure? Does the population size of an insect influence
a given animal disease? Does the price of a share in the stock market influence the
price of another share? Does Facebook friendship influence WhatsApp contacts? In
any case, we are only able to answer these questions if we can measure and compare
the dynamics of such events over time.

In order to measure influence, we consider objects that are associated with some
kind of time series over the same time period, so that we can “compare” the time
series of two objects in order to measure the amount of influence that one object
has over the other. In order to measure influence or information transfer, and not
simply correlation between two time series, an important notion is that of present
and future. Influence comes after the fact. Information passed in the present affects
the future. This will also induce a direction in the relationship, as the present of an
object may influence the future of another, but not necessarily vice-versa.
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Transfer entropy [1, 2] is a relatively recent metric proposed to measure the
influence of one object over another from their corresponding time series. Thus,
it embodies all of the above requirements and it has been applied to a myriad of
scenarios, and in particular to financial markets (see discussion in Chapter 2. The
concept of transfer entropy is the cornerstone of this thesis as well as its application
to the Brazilian stock market exchange. However, different from most prior works,
the main objective of this thesis is to characterize and identify top-ranked stocks
according to the influence they exert or suffer in the stock market.

Thus, the main focus is characterizing the influence between shares in the stock
market exchange. Is there influence between pairs of shares? Can such pairwise
influence be used to determine the most influential and the most influenced shares
in the stock market? To achieve this goal, we consider time series to represent
the price evolution of shares in the Brazilian stock market. In fact, the entire 32
years of historical data with daily stock prices negotiated in the Brazilian stock
market exchange is considered in this work. Using a daily price change reference,
we build for each stock a time series of symbols representing the direction of price
change (up, down, no change, no negotiated). We then measure the information
transfer between a single pair of symbols time series using the measure for transfer
entropy. Finally, using the information transfer among all pairs of shares, we build
a directed weighted network where nodes are shares and edges have weights with
transfer entropy representing information transfer. Thus, nodes of this network can
be ranked using classic network centrality metrics to assess their importance, as
discussed in Chapter 3.

The previous analysis comprises a very long period of time (32 years) and the
vast majority of shares (nodes) are removed from the analysis due to low liquidity in
the period (i.e., not traded on most days). Moreover, the time varying dynamics of
the stock market intuitively will lead to a time varying influence among the stocks.
In order to characterize the influence over time, the proposed methodology is applied
to a sequence of overlapping time windows that lead to a sequence of networks over
time, as discussed in Chapter 4.

The empirical computation of transfer entropy from time series can require sig-
nificant computational effort depending on the number of symbols and length of
the time series. Thus, models that can predict the transfer entropy from simple
parameters extracted from the time series can be very useful. Chapter 5 proposes
a simple model to predict the mutual information between two random variables.
The model has two parameters and a simple analytical expression. This model can
also be used to predict the transfer entropy in a simplified model. This model can
be of independent interest, beyond the problem of characterizing influence.
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1.1 Objective

So, this work has two main objectives:

1. Define a metric to gather influence, giving it a number;

2. Apply that metodology over long historical time series.

In order to do that we will use concepts as transfer entropy, network centrality
measures, time series and node ranking.

1.2 Main contributions

The main contributions of this work are summarized as follows:

1. A methodology to characterize influence (influential and influenced) from em-
pirical time series. This methodology uses the notion of transfer entropy to
build a weighted directed network that is then used to rank nodes according
to the influence they exert or suffer in the network. This work was published
in SBC WPerformance 2018 and received the Best Paper Award [3].

2. An application of the proposed methodology to the Brazilian stock market
using historical data comprising of 32 years. The original stock price time
series was converted into a price variation time series and filtered for liquidity
before applying the proposed methodology. Results indicate several findings
concerning influence in the Brazilian stock market and its correlation with
financial indicators. Part of this work was published in SBC WPerformance
2018 and received the Best Paper Award [3].

3. An application of the proposed methodology over time to the Brazilian stock
market comprising of a sequence of 65 networks (time windows). The charac-
terization of influence over time indicates that top influential and influenced
nodes are highly dynamic, among several other findings. This work was pub-
lished in Physica A in 2023 [4].

4. A simple model to predict the mutual information for two random variables.
The model has two parameters and yields an analytical expression that can be
easily computed. The model is also related to a simplified model for predicting
the transfer entropy between three random variables. This work has yet to be
published.
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1.3 Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 presents important concepts and related works concerning informa-
tion transfer, network centrality (ranking), and stock market analysis.

• Chapter 3 presents the proposed methodology for characterizing influence us-
ing transfer entropy networks. The methodology is applied to the Brazilian
stock market to determine top influential and influenced stocks of that market.

• Chapter 4 applies the proposed methodology to characterize influence over
time in the Brazilian stock market. Using a sliding window methodology,
65 different entropy networks are constructed and analyzed to characterize
influential and influenced stocks over time.

• Chapter 5 presents a simple and parsimonious model to predict the mutual
information between two random variables, as well as its adaptation to predict
transfer entropy.

• Chapter 6 presents a brief conclusion and outlines potential future work.
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Chapter 2

Background and Related Work

The idea of measuring time series dependency is old, and there are many ways to
measure dependency and information. Possibly the most widely accepted notion is
that of entropy, introduced by Shannon [5].

2.1 Shannon Entropy

Before one aims measuring dependente between two time series, it is imperative to
gauge each time series by itself.

One way to do that is to use the notion of entropy introduced by Shannon [2, 5].
In his work, Shannon grounded the basis of information theory and the way to store
and transmit information through a noisy channel without loss of information.

His work is in the basis of modeling and building communication systems, as he
has proved mathematical limit of how well a receiver is able to identify what data
was generated by transmitter through a channel, with applications, for example in
the Ethernet (IEEE 802.3), the Wi-Fi (IEEE 802.11) or cell phone systems (FDMA,
GSM, TDMA, CDMA, UMTS, LTE, NR etc).

2.1.1 Definition

Given a random variable I, with probability distribution p(i), the Shannon entropy
HI is defined as

HI = −
∑

i∈D(I)

p(i) log2 p(i) (2.1)

where the sum extends over all possible values i for I, as D(I) is the image of
random variable I. The higher the value of HI the more information it carries out.
In particular, the maximum value of HI is achieved for a uniform random variable.
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2.2 Mutual Information

When dealing with two time series simultaneously a useful measure for their mutual
dependence is the mutual information [6, 7].

We can see it as the amount of information that can be obtained about one
random variable by observing the other random variable.

2.2.1 Definition

The mutual information MIJ of two random variables I and J , with distribution
p(i) and p(j) respectively, and joint-probability p(i, j) is defined as

MIJ =
∑

i∈D(I)
j∈D(J)

p(i, j) log2
p(i, j)

p(i)p(j)
(2.2)

Mutual information does not fit our goals because its result does not consider
the direction of the relationship between the two elements.

2.3 Transfer entropy

To account for these directed relationship between two objects we use the concept
of transfer entropy.

Transfer entropy was introduced by Schreiber in [1]. In his article, Schreiber
approached the subject of measuring information transfer between two systems rep-
resented by their time series. He was interested in understanding how individual
values produced by a system could guide information production so that another
system were sensitized in a probable way.

Schreiber’s work is based on the concept of entropy of a random variable and
mutual information [5]. The novelty of Schreiber’s proposal with respect to mutual
information is the introduction of a time delay in one of the series.

Bossomaier et al. [2] make a compilation of transfer entropy and some funda-
mental concepts about this subject.

2.3.1 Definition

Unlike other methods for measuring coherence or correlation (relationship in general)
between two time series, transfer entropy has a directional methodology, through
introduction of a time lag between time series, which compares an event (a value)
in a time series to an event shifted in the other time series.

In [1] Schreiber defines transfer entropy TJ→I as
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TJ→I =
∑

p(in+1, i
(k)
n , j(l)n ) log

p(in+1 | i(k)n , j
(l)
n )

p(in+1 | i(k)n )
(2.3)

Where:

• I and J are numerical series with same length N ;

• in+1 is an element of I, for n ∈ {1, 2, . . . , N − 1};

• i
(k)
n and j

(l)
n are segments, respectively, from I (with lenght k) and J (with

lenght l), backwards starting in n. Then, i(k)n = in−k+1, . . . , in−1, in and j
(k)
n =

jn−l+1, . . . , jn−1, jn;

• p(·) is the joint-probability density function.

For computational reasons, we only consider transfer entropy where J and I are
discrete random variables, assuming a finite number of symbols, and we consider
the case in which the segments i

(k)
n and j

(l)
n have both length 1 (k = l = 1). Under

these assumptions and using the definition of conditional probability Equation (2.3)
can be rewritten as

TJ→I =
∑

p(in+1, in, jn) log
p(in+1, in, jn) · p(in)
p(in+1, in) · p(in, jn)

(2.4)

where summation runs over all possible values for in+1, in, jn.

2.3.2 Computing Transfer Entropy

Consider two time series I and J , both with length N . In order to apply Equation 2.3
to empirical data the (joint and conditional) probabilities of p(i+, i, j), p(i+ | i, j)
and p(i+ | i), where i+, i ∈ I and j ∈ J , must be properly estimated. This is done
using the time series to compute the relative frequency of the observed values.

To ease calculation, those probabilities are transformed into their versions with-
out conditionals, yielding only the (joint) empirical probabilities p(i), p(i+, i), p(i, j)
and p(i+, i, j). Thus, the number of occurrences for each instance (single value, pair
of values and triple values) is counted across the two time series to determine the
corresponding relative frequencies, which are used as their probabilities.

Finally, the transfer entropy from J to I is determined by the summation de-
scribed below, running over all values contained in I and J series.

TJ→I =
∑

in+1, in ∈D(I)
jn ∈D(J)

p(in+1, in, jn) log2
p(in+1, in, jn) · p(in)
p(in+1, in) · p(in, jn)

(2.5)
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where n ∈ 1, 2, . . . , N − 1 and ik, jk are the k-th values into I and J series, respec-
tively.

As discussed ahead in Section 3.1.2, values for in+1, in and jn are discrete and
can assume only four different symbols, instead of a larger number of values or even
a continuous scale. Note that the space of possible combinations of values among
these three variables grows exponentially in the number of symbols, and can thus
hamper estimation of their respective probabilities and, consequently, lead to a noisy
computation of the transfer entropy.

2.3.3 Applications of transfer entropy

Since its introduction, transfer entropy has proved useful in several applications.
Market networks can be defined as the network of equities created by enter-

prises and their relationships within the financial market. Market networks take
advantage of network analysis tools and metrics which are leveraged to analyze
the market, understand relationship between enterprises, support forecasting and
portfolio strategies [8, 9].

There are various works on market network analysis [10, 11], market network
measurements [12], market network correlations [13–16], stock market network fore-
casting [17] and financial modeling [18]. For example, Tabak et al. [10] considers
a market network where nodes are shares in a stock market and undirected edge
weights denote a distance based on cross-correlation between the prices time series.
In particular, correlation values of +1, 0 and −1 were mapped into distances of 0,
1.4142 and 2, respectively, which are then used to compute the Minimal Spanning
Tree (MST) of the network.

Approaches based on transfer entropy have recently increased and are being
addressed in different scenarios, including financial markets [1, 2, 19]. In particular,
there are recent studies on information transfer between stock markets (of different
countries) using transfer entropy methods [19–23], including the use of variations
like Effective Transfer Entropy, Phase Transfer Entropy, Rényi’s Transfer Entropy
and Effective Phase Transfer Entropy, that are discussed in the following. However,
our focus is information transfer between shares of the same stock market.

Kwon & Yang [20] used transfer entropy to assess strength and direction of
information flow between global stock indexes, in a total of twenty-five ones. They
made use of most important stock market over four continents, and, aggregating
them into three major sets, measured how fluctuation in one set of markets could be
reflected on the other ones. Via transfer entropy they were capable of elucidating
that there is a correlation between some of those markets and it was not obtained
by chance.
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Marschinski & Kantz [21] also have a study wrapping information flow between
stock markets using a slightly modified version of transfer entropy, called effective
transfer entropy (ETE) as the measuring tool due to limited availability amount of
data. Their study object were US-American Dow Jones Industrial Average (DJ) and
German DAX Xetra (DAX) with a time scale of one minute between them.

Yang, Shang & Lin [19] analyze financial time series proposing a novel Effective
Phase Transfer Entropy (EPTE), using signal phase shifts.

Korbel, Jiang & Zheng [22] analyze information flows among shares over the
main five stock market, using transfer entropy, as complex networks communities.
In special, they try to find out information flow among economic sectors, represented
by sets of shares.

Jiayi He and Pengjian Shang [23] use transfer entropy to analyze stock market
indexes influence and to compare the results with other three methods: effective
transfer entropy (ETE), Rényi transfer entropy (RTE) and propose a effective Rényi
transfer entropy (ERTE).

2.4 Network Centrality

There are real world systems which, for their complexity in quantity of elements and
their relationship, have an intrinsic difficulty to be analyzed.

A common need in a study into this subject is to rank those elements by some
kind of metric or characteristic, so we can measure importance of each element
compared to the others.

There are many available models and metrics for ranking those elements. In
many cases those systems are modeled as graphs, where elements are represented
by nodes (vertices) and their relationships by links (edges) between each pair of
vertices.

In particular, there are situations where those connection lines have a particular
characteristic of directionality. In other words, given a pair of nodes A and B, a
link from A to B is not necessarily equal to the one from B to A. So here we have
a directed graph.

2.4.1 Node Ranking in Networks

There are many available models and metrics for ranking nodes in directed weighted
networks. Directed edges give us to distinguish two types of nodes in the network:
authorities and hubs. Authorities are nodes which act as sinks, receiving most of
the links or the most valuable links, while hubs are nodes with many outgoing edges
links or the ones with higher values.
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In order to rank network nodes two techniques that can be applied are Pagerank
[24, 25] and HITS [26, 27]. Pagerank ranks web pages by their importance, con-
sidering the importance of the pages that point to it. HITS has a similar recursive
structure, but considering that nodes are both hubs and authorities, and uses this
categorization in defining importance. In particular, an important authority is a
node that is pointed to by important hubs. Similarly, a hub is important if it points
to important authorities.

Since the graph that represents the market network is complete (all edges are
present), because we seek relationships between all stocks, such algorithms are only
meaningful in their extended version that uses edge weights: weighted Pagerank [28]
and weighted hyperlink-induced topic search [29, 30].

2.4.2 Pagerank

Pagerank is an algorithm that was originally produced to sort web pages by their
importance, counting how many links from other important pages point to a spe-
cific page. The more a page gets indications from other important pages, more it
is important. This definition is clearly recursive and that algorithm is proven to
be convergent to the extent that it is iteratively executed. The algorithm assigns
a unique number to every node (web page). The higher the number the more im-
portant the page is relatively to all other pages. For this work a slightly different
version of Pagerank must be used, as we need to deal with links weight instead of
links amount. In the end, we have a unique number that means how important a
node is regardless of whether it is the source or sink for the link, that is, it does not
differentiate important sources (hubs) and sinks (authorities) from each other.

2.4.3 HITS

The HITS algorithm, on the other hand, uses a similar approach, but assigns two
numbers to each node, one for how important it acts as a hub (origin of links) and
a second number for how important it acts as an authority (destination of links).
Again, it is necessary that a modified version of the algorithm is used to compute
links weight instead of links amount.

2.5 Stock Market Analysis

Stock market is an environment where share prices can change due external factors
like politics, economics, wars, speechs of authorities, publication of economic data,
some company balance sheets, crop data, relevant weather events and many other
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variables, even rumors. All those external data are out of control of shareholders and
stock brokers, but may impact share prices and seriously affect their stock positions.

As well, we can think stock market exchange internal factors can affect share
prices, for example, the rise or fall in the value of shares of a given company, a
given sector or a given stock index may suggest or influence operators to sell or buy
certain shares, which would influence their prices and, consequently, their upward
and downward movements.

A common picture is that of a stock exchange trader, in front of a monitor,
watching the rise and fall of stock prices, waiting for the right moment to place his
orders.

And then there are those traders who perform so-called fundamental analysis,
who base their decisions on trying to look at the big picture and predict the direction
in which the market (which is nothing more than people) will go.

But all this market analysis with the purpose of supporting stock buying and
selling decisions requires economic study, stock market research and a good deal of
expertise.

But a possible trend analysis of market share price movements could, in theory,
be carried out by basically looking at the values and movements of shares within
the market itself, believing that the movement of possibly a single share or a set of
shares can cause another share or another set of shares to be price-modified up or
down in a ripple effect or, in other words, with the former influencing the latter.

That is what this work tries to do, a endogenous analysis of share prices move-
ments. But, instead looking at the raw share prices, we will focus on the upward
and downward movements, in a historic base, using data publicly available at [B]3

website [31].
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Chapter 3

Characterizing Influence using
Transfer Entropy Networks

Shares traded in a stock market intuitively influence one another, as the price vari-
ation in a share may trigger (or be correlated with) a subsequent price variation in
another share. Intuitively, an investor or stockbroker observes price movements of
shares today to make decision about buying or selling shares tomorrow.

Our focus is the influence between shares in a stock market exchange. By con-
sidering a pairwise directed measure of influence, we construct a directed weighted
network and leverage its structure to determine the most influential and the most
influenced shares in the stock market.

To achieve this goal, we consider the time series to represent the share price move
direction (not the share price value) and measure the information transfer between
every two ordered pair of shares. We construct a directed weighted network where
nodes are shares and edges weights represent transfer entropy values. Thus, we can
analyze this network using classic centrality measures to assess the importance of
nodes (shares).

Note that the edge weight wi,j denotes how much share i influences share j.
Intuitively the sum of incoming edges to node i characterizes how influenced is this
share, while the sum of outgoing edges of node i characterizes its influence power.
Ranking shares based on its influence power or its subjection to influence yields a
metric of importance for shares.

The ranking of shares can be done using algorithms like Pagerank or HITS,
originally developed for ranking web pages [24–26], which leverage the weights and
structure of the network. Moreover, nodes can also be ranked by their incoming and
outgoing total (sum) edge weights, here called Node Weight.

We apply this methodology to shares traded in the [B]3, the most important stock
market exchange in Brazil. Using publicly available data (time series of share daily
prices over a 32 year period), we measure pairwise transfer entropy and construct the
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network. We rank nodes according to three different metrics yielding for each metric
a ranking for influential and influenced shares. We assess the coherency among the
top ranked shares across the different rankings to better characterize influenced and
influential shares. We also investigate the relationship between influence (according
to the ranking of different metrics) and traded volume of shares, and results indicate
there is virtually no correlation.

The novelty of this work is to consider the relationship between present and
future price movements of different shares. We are not aware of other works that
leverage influence among present and future share movements to rank influential
and influenced shares.

3.1 Methodology

This section discusses the time series dataset that was constructed as well as the
proposed methodology to rank influential and influenced stocks.

3.1.1 Time series

Stock price is the most basic information concerning a stock and most analysis use
the stock price over time. Instead, the focus of this work is on price movement: the
direction of change in the stock price within a trading day. In particular, our focus
is to measure the influence that a price movement of a given stock today has on the
price movement of another stock tomorrow.

Several studies make comparisons between stock prices which are synchronized in
time, that is, prices of two stocks A and B are compared in the same time interval
ti, . . . , tf , where ti and tf are initial and final time instants, respectively. Such
studies investigate the binding between the prices of two stocks, trying to measure
and understand when they might move together (e.g., correlated) over time.

In contrast, our focus is on stock price movements in subsequent days. This is
motivated by trading decisions (to sell or buy a stock) that often occur after the
observation and analysis of prior but recent stock price movements. Intuitively,
there is a time delay between observing (stock price movements) and taking action
(trading a stock). Thus, the proposed methodology follows along this intuition.

Thus, daily couple of stock prices are converted into symbols that are the basic
elements of the time series, namely price movements. One advantage of using price
movements is to have just three symbols (e.g., up, same, down) for each time series,
which allows for a more accurate estimation of the empirical distribution of a pair of
time series (joint and marginal, as required by the calculation of transfer entropy).
Another advantage is being independent of price magnitude, as different stocks have
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t 0 1 2 3 4 5 6 7 8 9 10
OP 8.69 0.28 9.18 5.66 2.77 1.51 8.85 8.88 4.98
CP 0.28 9.18 5.66 2.77 7.18 8.85 8.88 4.98 3.12
MD ↓ ↑ ↓ ↓ ↑ ∅ ↑ ∅ ≈ ↓ ↓

t = time (day); OP = opening price; CP = closing price; M = movement direction

Figure 3.1: Mapping stock prices series into stock movements (biases) series.

trading prices with different orders of magnitude.

3.1.2 Movement symbols

A set of symbols indicating price movements are used to investigate influence in the
stock prices movements. Using the daily opening and closing prices for stocks we
map a price series (“continuous” float type) into a symbol series (discrete “integer”
type) as shown in Figure 3.1. If a stock price goes up from stock market exchange
opening time to its close time, we have some “↑” symbol for that stock in that day;
if it goes down, we have some “↓” symbol; if it remains almost the same, we have a
“≈” symbol; and there are cases where we have no opening neither/or closing price
for the stock, because it is not traded in that day, and in this case we have a “−”
symbol.

The term “almost the same” means that the magnitude of the difference between
opening and closing prices are withing a factor of ε > 0. The idea is to avoid false
up or down movements due to very small price variations in the day. While ε can be
chosen arbitrarily, this work considers the factor ε = 4.5 · 10−5 = 0.0045% because
it represents a daily percentage that corresponds to a 1% (one percent) monthly
variation divided by 22 (twenty two) business days in a month.

Therefore each stock has a time series whose elements are one of four possible
symbols (↑, ↓,≈,∅) and its length is the number of business days in time period.

3.1.3 Pairwise transfer entropy

The time series of stock movements is used calculate the transfer entropy between
each ordered pair of stocks. A lag of one day in the time series is used. Thus,
the transfer entropy will measure the information transferred from the price move-
ment today of a given stock to the price movement tomorrow of another stock. The
necessary empirical probability distributions (joint and marginal) required in Equa-
tion 2.3 are first computed. Using these empirical distributions, the transfer entropy
is computed.

Note that transfer entropy is a directed measure: given two stock time series A

and B, the lag of one day of A with respect to B will yield a different joint empirical

14



distribution from corresponding empirical distribution for the lag of one day of B
with respect to A.

3.1.4 Network and ranking

All ordered pairs of stocks are considered in constructing the network of stocks.
Thus, we have a complete directed graph (all possible edges are present) where
nodes are stocks and directed edges have weights that correspond to the transfer
entropy between the ordered pair.

In order to rank nodes and capture the set of influential and influenced nodes
in the network, Pagerank [24, 25], HITS [26, 27] and node weights (incoming and
outgoing) are used.

3.1.5 Similarity coefficients

In order to assess results from several rankings, we need a tool to compare them to
each other.

Jaccard similarity

The Jaccard similarity coefficient is a statistic used to determine the similarity and
diversity of two sets and is defined as the size of the intersection divided by the size
of the union of the two sets. For two sets A and B, the Jaccard similarity is given
by

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
,

where J(A,B) = 1 if the sets are identical and J(A,B) = 0 if they have no elements
in common. The Jaccard similarity is often used to determine the similarity between
the top-k elements of two rankings.

Spearman’s correlation coefficient

The Spearman’s rank correlation coefficient (ρ) measures the correlation between
two rankings. It does not use the values associated with the data points but instead
their relative ordering. The coefficient is calculated over the entire ranking and it
is +1 when the two rankings are identical and −1 when one of them is a reverse
ordering of the other. The value 0 indicates their is no correlation between the two
rankings (i.e., one of them is random permutation of the other).
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3.2 Dataset Details

[B]3, which stands for Brasil, Bolsa, Balcão, the main brazilian stock market ex-
change, is the target case of this work. There are more than 1500 companies which
negotiate their bonds in [B]3, as seen on data records for 2019, the last year of study.
And such information, including bond prices, is publicly available [32].

Companies can have a large number of different bonds negotiated in the stock
exchange and are also responsible for various actions concerning them, such as cre-
ation, discontinuation, name changes, joining or splitting bonds. However, such
activities impose limitations in the data analysis since those records are not always
easily available, being hard to track name changes, or bonds that have joined or split.
This poses some difficulty in tracking a particular bond over long time periods.

3.2.1 Dealt stocks and records

[B]3 offers an electronic data set containing daily transactions for each stock since
January 1986. Our initial evaluation, with data until 2019, revealed 183,127 different
bonds negotiated in the stock market within that period, where each bond within
[B]3 is identified by a unique code. However, many of them have a short life time
(e.g., one month) or a very low liquidity (fraction of days that it is traded). In terms
of an analysis over a large time period, stocks with one of these two characteristics
are not interesting. For instance, a particular type of bond, the stock option has not
been considered in this work, even if it corresponds to more than 91% of all papers
traded since it is also not an enterprise stock.

Therefore, the following two filters were applied to the original data discarding
stocks that did not pass this criteria:

1. Stock code is dealt in at least in 50% of the business days within the period
considered (i.e., liquidity of at least 0.5).

2. Stock code is not a stock option.

When considering the entire 32-years period, this filter reduces the amount of stock
codes from tens of thousands to a few hundred. Moreover, since the liquidity criteria
is for a particular period, it is possible that stock does meet this criteria for a
certain period (e.g., one year) but does for another period (e.g., a different year).
The relative high requirement on the minimum liquidity (traded in at least half
of the business days) is to ensure that the stock is traded often enough such that
information flow (transfer entropy) from this stock to others and from others to this
stock can be computed more reliably.
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3.2.2 Daily basis time series

In order to obtain biases (direction of variation in share price) series from price
series of each share, we have chosen a daily basis of its closing price relation to its
opening price. Chosing a daily basis instead of a, for instante, a weekly basis was
done having in mind to have longer time series, with more date, and obtain more
accurate transfer entropy values, as this computation is too sensitive to series length.
Furthermore, we use the maximum [B]3 gives us as source data.

Beyond that, it looks like there isto no reason, tha is strong enough, to choose a
time scale other than daily over the latter. Therefore, the choice, for the purposes of
the study, is reasonably arbitrary and, if necessary, such a study can be replicated
using the same methodology on another time scale.

3.3 Results on Overall Network

This section presents empirical results obtained by applying the proposed method-
ology to data from [B]3 considering a single transfer entropy network comprising the
entire 32-years period, ranging from January 1986 to December 2019. Raw data
for this period consists of 8,125,691 records (each record is a daily transaction of a
bond), wrapping 183,127 unique stock codes, on 8,385 working days, carried out by
4,730 companies. However, recall that some stocks are not considered due to their
type (stock option) or very low liquidity over the period. After removing them, only
a total of 98 liquid stocks remain, a fraction of 0, 000535148. This reflects the fact
that very few stocks are actively traded over the entire 32-years period.

As a remark, results throughout this section are presented using the empirical
complementary cumulative distribution function (CCDF) which captures the per-
centage of objects (edges or nodes) that are above a certain value, and are suited
for heavy tailed distributions (in log-log scale). A point (x, y) in this plot indicates
the fraction y of objects that have a value greater than x. The plots also indicate
with grid lines the 50% (median value, in red), 10% (green) and 5% (yellow) of the
distribution.

3.3.1 Edges weight: transfer entropy values between stocks

We start by presenting results on the edge weights among all 98 stocks. Note that
the network is a complete graph with directed edges and, thus has a total of 9,506
edges. Recall that edge weights represent transfer entropy values between respective
nodes, according to the direction of information transfer.

Figure 3.2 shows the complementary cumulative distribution function (CCDF)
of edge weights. The additional colored grid lines indicate 50% (red), 10% (green)
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Table 3.1: Top-20 transfer entropy values for 32-years period, from stock j to stock
i.

# i (to) j (from) Tji (transfer entropy)
1 CSNA3T USIM5T 0.0381664944121
2 FNAM11 GGBR3F 0.0343417549928
3 FNAM11 BRKM5F 0.0332163988323
4 FNAM11 BRKM5 0.0326865832172
5 RSID3 GGBR3F 0.0316434026287
6 CSNA3T GGBR4T 0.0302360042251
7 ALPA4 GGBR3F 0.0301210219964
8 FNAM11 CCRO3 0.0297901606699
9 FNAM11 SAPR4 0.0295252827106
10 ITSA3 SLED4 0.0295212046787
11 TELB3F CRUZ3 0.0292981139248
12 POMO4 BRKM5F 0.0292606302150
13 RSID3 SLED4 0.0291596116402
14 FNAM11 IDNT3 0.0291281610330
15 ITSA3 RSID3 0.0288580360821
16 FNAM11 KLBN4F 0.0287563399963
17 FNAM11 POMO4F 0.0287128955369
18 PETR4T CSNA3T 0.0286861454868
19 FNAM11 SLED4 0.0285840734402
20 POMO4 BRKM5 0.0283279060196

and 5% (yellow) of 9,506 total points of the distribution. Note that a small frac-
tion of edges have a very large value for transfer entropy. The shape of the curve
exposes a heavy tail feature where most edges have very small transfer entropy val-
ues indicating they transfer little or no information, while a small fraction of edges
transfer much more information. Calculating loglikelihood ratio among some can-
didate distributions indicates, however, it does not follow a power law distribution
nor present a power law tail. The 20 largest values (Table 3.1) are represented by
the green dots in Figure 3.2. Note that 50% of the values have a transfer entropy
less than 1.984 × 10−3, whereas 5% have a value larger than 1.662 × 10−2, with an
average of 4.141× 10−3. Negative transfer entropy values are possible and indicate
that no information is transferred.

Note that some stocks in Table 3.1 appear multiple times as the source (j column)
of information transfer among the largest edge weights, while other stocks appear
multiple times as the target (i column), suggesting that there are bonds with greater
presence in each side of information transfer. For example, SLED4 (3x), GGBR3F (3x),
BRKM5 (2x) and BRKM5F (2x) appear more than once as source of information transfer
among the top 20 (number of appearances are in parenthesis) of most influential
stocks. If we do not consider the stocks but the corporation (companies), aggregating
their bonds, BRKM (4x), GGBR (4x) and SLED (3x) occur several times as influential
source of information transfer. On the other side, CSNA3T (2x), RSID3 (2x), FNAM11
(9x), ITSA3 (2x), POMO4 (2x) appear frequently as target of information transfer

18



Figure 3.2: Complementary cumulative distribution function of weight (transfer
entropy) values for all edges for the 32-years period, in log-log scale.

among the top 20. Contrary to the situation with influential stocks, different bonds
do not represent the same corporation, so the number of bonds is the same as the
number of corporations.

Figure 3.3 shows all transfer entropy values at once, in matrix form, as a unicolor
map, with color intensity corresponding to transfer entropy values in linear scale.
Vertical axis are stocks that act as information transmitters whilst horizontal axis
stocks act as information receivers. For example, the 5 top edges values (for pair
of stocks) mentioned above are those in Table 3.2, while the 5 bottom values are
those ones in Table 3.3. In general, a lighter line in such a map suggests that the
corresponding stock is not an important source of information transfer, whereas a
darker line indicate that the stock transfers significant information to other stocks.
The top 5 most influential stocks appears in Table 3.4 and 5 least influential in
Table 3.6. Analogously, a lighter column suggests that the stock does not receive
much information from other stocks, being therefore non susceptible to the action of
others, and a darker column suggests a stock receives information from many other
stocks. Tht top 5 most influenced stocks are shown in Table 3.5 and the 5 least ones
in Table 3.7.
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Table 3.2: Overall top 5 transfer entropy values, also illustrated in colormap of
Figure 3.3.

line column from to transfer entropy value
93 33 USIM5T CSNA3T 0.0381664944121
47 45 GGBR3F FNAM11 0.0343417549928
16 45 BRKM5F FNAM11 0.0332163988323
15 45 BRKM5 FNAM11 0.0326865832172
47 78 GGBR3F RSID3 0.0316434026287

Table 3.3: Overall bottom 5 transfer entropy values, also illustrated in colormap of
Figure 3.3.

line column from to transfer entropy value
30 46 CRUZ3 FNOR11 -0.00908997612219
97 46 VALE5F FNOR11 -0.00952680861834
30 61 CRUZ3 ITSA4T -0.01118301432840
30 45 CRUZ3 FNAM11 -0.01120112405660
30 25 CRUZ3 CMIG4T -0.01350899110990

Table 3.4: 5 most influential stocks, also illustrated in Figure 3.3.

line stock transfer entropy summation
45 FESA4 1.0788611224182590
75 PETR4F 1.0174284791173107
0 ALPA4 1.0167043055403462
33 CSNA3 0.9603095956577570
74 PETR4 0.9412726806220999

Table 3.5: 5 most influenced stocks, also illustrated in Figure 3.3.

column stock transfer entropy summation
47 FNAM11 1.0085356414726480
54 GOAU4 0.9074556562171353
90 UNIP6 0.8916304188223408
17 BRKM5 0.8896364765005400
82 SBSP3 0.8727675593858700

Table 3.6: 5 least influential stocks, also illustrated in Figure 3.3.

line stock transfer entropy summation
83 SBSP3F 0.019319701110951003
39 ELET6 −0.003204582188684090
18 BRKM5F −0.048637158118732540
10 BBDC4F −0.050704479162321590
46 FJTA4 −0.136756721479942400
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Figure 3.3: Colormap of weight (transfer entropy) values for all edges for the 32-
years period, among 98 nodes, in linear scale.

Table 3.7: 5 least influenced stocks, also illustrated in Figure 3.3.

column stock transfer entropy summation
18 BRKM5F 0.100734284889238110
96 VALE3 0.082605480412294110
30 CPLE6 0.078982563300848980
68 LAME4F 0.070089128376402700
46 FJTA4 0.056565966447729994

3.3.2 Node weight

Node weight is what we call the summation of all incoming or outgoing edges on
that node. Incoming weight is the sum of incoming edges, whilst outgoing weight is
the sum of outgoing edges of a specific node.

The outgoing and incoming weights of nodes allow us to understand their impor-
tance in transferring (both sending and receiving) information in the stock network.
Thus, each stock could now be ranked both in terms of playing as influenced or
influential of information transfer in the graph.

Stocks with higher incoming weight are those more susceptible to price variations
of other stocks, whereas stocks with lower incoming weight are relatively proof of
other stocks movements. Both kinds of stocks are interesting, depending on the goals

21



and stock market expectations. Stocks with higher outgoing weight are the most
influential ones, whereas stocks with lower outgoing weight are relatively invisible
to the other stocks.

Figure 3.4: Complementary cumulative distribution function of node incoming
weights (influenced by others), in log scale.

Figure 3.4 shows the complementary cumulative distribution functions for in-
coming and Figure 3.5 for outgoing node weights, in logarithmic scale. In both
plots, their shapes show that most stocks have a very small weight while a small
fraction of the stocks have weights much larger than the average, indicating a heavy
tail distribution. However, such distributions fail to pass an statistical test for power
law distributions. In any case, the heavy tail nature of the distributions indicates
that only a small fraction of the stocks are actually influential and influenced.

Notably, the incoming weight of top 20 stocks among 98 ones represent 43.6%
of total incoming weight (top 5 ones can be seen in Table 3.5), whilst top 20 ones
with outgoing weight represent 41.1% of total outgoing weight (top 5 ones can be
seen in Table 3.4).

Interestingly, there is an overlap of 40% (8 stocks) between the top 20 largest
incoming and outgoing weight values, as shown in Table 3.8, whereas Spearman ρ

coefficient between the entire incoming weight ranking and outgoing weight ranking
is 51.13%. This shows that stocks can play both roles of being influential (to a set
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Figure 3.5: Complementary cumulative distribution function of node outgoing
weights (that influence others), in log scale.

of stocks) and influenced (by another set of stocks), as the two metrics (Jaccard and
Spearman) indicate a moderate degree of correlation (similarity).

3.3.3 Pagerank

The weighted version of Pagerank [24, 25] was used to rank the stocks. Note that
the weighted Pagerank algorithm computes how important a stock is with respect
to being the target of information transfer; in other words, how much the stock
market influences that stock. Larger Pagerank values indicates stocks that are more
influenced.

On the other hand, in order to capture how influential are the stocks using Pager-
ank, we reverse the direction of the edges in the graph. With this transformation,
a node with high summation of “incoming” edges is a great source of information
transfer. The weighted version of Pagerank is applied to this network (with reversed
edges) to identify the most influential nodes.

Figure 3.6 shows the CCDF of Pagerank values for the original network, whereas
Figure 3.7 shows the CCDF of Pagerank values for the reverse edge network. Again,
very few nodes have Pagerank values much larger than the average, being very much
influenced by others (Figure 3.6) or very much influential on others (Figure 3.7).
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Table 3.8: Stocks both in top 20 incoming and top 20 outgoing weight rankings.

stock incoming outgoing
code ranking # ranking #
GUAR3 14 2
USIM3 15 3
GOAU3 12 8
ITSA3 8 10
CSNA3T 4 15
PETR4T 5 18
RSID3 6 19
ALPA4 3 20

Table 3.9: Stocks both in top 20 Pagerank and top 20 reverse edge Pagerank rank-
ings.

stock straight reverse
code ranking # ranking #
GUAR3 13* 2
USIM3 15 4*
GOAU3 12 8
ITSA3 7* 9*
CSNA3T 4 16*
PETR4T 6* 19*
RSID3 5* 18*
ALPA4 2* 20

Same way as edge weights and node weights, such distributions fail to pass an
statistical test for power law distributions. These charts can be compared to those
in Figures 3.4 and 3.5 which shows incoming outgoing node weight, respectively.
Interestingly, note that incoming weight and Pagerank look very similar as well as
outgoing weight resembles reverse edge Pagerank.

The Jaccard similarity of top 20 stocks in the Pagerank rankings for the two
networks (original and reversed edges) is 40% (8 stocks), as shown in Table 3.9.
The Spearman similarity is ρ = 50.67% for the entire Pagerank rankings of the
two networks. Again, there is significant overlap between the top influenced and
influential stocks, as well as significant similarity in their rankings.

Remarkably, comparing Table 3.8 (for node weight) and Table 3.9 (for Pagerank),
note that 8 stocks are exactly the same and are either in the same ranking position
or at most 1 position different (different positions are indicated by an asterisk sign).
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Figure 3.6: Complementary cumulative distribution function for Pagerank values of
stocks (influenced), in log-log scale.

3.3.4 Authorities and hubs

We also use HITS algorithm [27] to rank stocks in the graph. HITS algorithm assigns
two numbers to every node in the graph, namely a hub factor and an authority factor.
A hub is related to the source and an authority to the target of information transfer.
Figures 3.8 and 3.9 show the complementary cumulative distribution function for
authority and hub values.

As Pagerank, HITS graphics show that there are some shares whose values are
very far from the average. We can compare graphics on Figure 3.8 with those ones
on Figure 3.6 and Figure 3.4, as well it is possible to compare Figure 3.9 with those
ones on Figure 3.7 and Figure 3.5. Shape of curves representing incoming edges
(incoming weight, Pagerank and HITS authority) look very similar to each other.
We can say the same about those representing outcoming edges (outgoing weight,
reversed edges Pagerank and HITS hub).

The Jaccard similarity of top 20 stocks between the two HITS rankings (authority
and hub) is 35% (7 stocks), as shown in Table 3.10. The Spearman similarity
is ρ = 52.19% for the entire HITS rankings of the two networks. Again, there
is significant overlap between the top influenced and influential stocks, as well as
significant similarity in their rankings.
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Figure 3.7: Complementary cumulative distribution function for reverse edge Pager-
ank values of stocks (influential), in log-log scale.

Again, comparing Table 3.8 (node weight) and Table 3.9 (Pagerank) with Ta-
ble 3.10, notice that seven stocks are exactly the same and are either in the same
ranking position or at most one position different.

Indeed, when those rankings are put side by side as in Table 3.11, we have a
consolidated sight of stocks that appear in all generated rankings.

Table 3.10: Stocks both in top 20 authority and top 20 hub rankings.

stock authority hub
code ranking # ranking #
GUAR3 13 3
USIM3 14 7
GOAU3 11 9
ITSA3 7 12
CSNA3T 3 17
PETR4T 6 19
RSID3 5 18

26



Table 3.11: Common stocks in top 20 rankings.

stock incoming outgoing straight reverse authority hub
weight weight pagerank pagerank hits hits

code ranking# ranking# ranking# ranking# ranking# ranking#
GUAR3 14 2 13 2 13 3
USIM3 15 3 15 4 14 7
GOAU3 12 8 12 8 11 9
ITSA3 8 10 7 9 7 12
CSNA3T 4 15 4 16 3 17
PETR4T 5 18 6 19 6 19
RSID3 6 19 5 18 5 18
ALPA4 3 20 2 20 — —

Table 3.12: Jaccard similarity and Spearman’s ρ among rankings for influential and
influenced stocks for the same metric (node weight, Pagerank and HITS).

Metric weight Pagerank HITS
Jaccard 0.40 0.40 0.35

Spearman’s ρ 0.5113 0.5067 0.5219

3.3.5 Self-considered metrics

In what follows we consider the similarity between the rankings for influential and
influenced stocks for each of the metrics. In particular, the incoming node weight
ranking is compared to outgoing node weight ranking, Pagerank ranking is compared
to the reversed edges Pagerank ranking and authority ranking is compared to hub
ranking.

Table 3.12 shows the Jaccard similarity for the top 20 for each metric as well
as the Spearman ρ similarity coefficient. In both cases and for the three metrics
(node weight, Pagerank and HITS) there is some level of similarity between the
influential and influenced rankings (Jaccard ≈ 0.4 and ρ ≈ 0.51). This moderate
level of similarity indicates that some stocks can be influential and be influenced at
a relatively similar ranking positions, an observation that was not expected.

3.3.6 Comparison among ranking methods

If we cut off complementary cumulative distribution functions curves in Figure 3.4
(node weight), Figure 3.6 (Pagerank) and Figure 3.8 (HITS) in three segments ac-
cording to their “inflection points”, one can realize they look almost the same.

Interestingly, as seen in Table 3.13, there is a large intersection between top-20
incoming weight ranking and top-20 Pagerank ranking, with 19 over 20 bonds ap-
pearing in both rankings, resulting in a Jaccard coefficient of 0.95 for the incoming
metric. Moreover, the full ranking of these two metrics exhibit very strong corre-

27



Figure 3.8: Complementary cumulative distribution function for authorities values
of stocks (influenced), in log-log scale.

Table 3.13: Jaccard similarity and Spearman’s ρ among rankings for influenced
among metrics (node weight, Pagerank and HITS).

incoming Pagerank HITS authority
weight vs. vs. HITS vs.incoming
Pagerank authority weight

Jaccard 0.95 0.95 0.90
Spearman’s ρ 0.9951 0.9918 0.9968

lation, with a Spearman coefficient of ρ = 0.9951. Similar results were obtained
when comparing the other two pairs of rankings: Pagerank vs. HITS authority and
incoming weight vs. HITS authority, as can be seen in Table 3.13.

Furthermore, as seen at Table 3.14, all stocks appearing in top 20 reverse edge
Pagerank ranking are also present in the top 20 outgoing weight ranking. While full
the rankings are not identical, only a few exchanges occur either going up or down
a single position in the ranking, 3 with 4, 9 with 10, 15 with 16 and 18 with 19.
Besides that, the full ranking of these two metrics are very consistent, and have a
Spearman coefficient of ρ = 0.9914. Thus, there is a very strong coherence between
node weights and Pagerank for both influential and influenced rankings of stocks.
Same occurs between reverse Pagerank vs. HITS hub as well between HITS hub vs.
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Figure 3.9: Complementary cumulative distribution function for hub values of stocks
(influential), in log-log scale.

Table 3.14: Jaccard similarity and Spearman’s ρ among rankings for influential
among metrics (node weight, Pagerank and HITS).

outgoing reverse HITS hub vs.
weight vs. Pagerank vs. outgoing
Pagerank HITS hub weight

Jaccard 1.00 0.95 0.95
Spearman’s ρ 0.9914 0.9881 0.9951

outgoing weight.

3.3.7 Transaction volume

There are some financial indicators that reveal financial power of stocks under the
umbrella term transaction volume. We will consider three of them with slightly
differences: (a) financial volume, meaning total amount of money negotiated in
financial transactions of a stock; (b) amount of deals, meaning number of trades
carried out with the stock; and (c) total amount of stock dealt, meaning total
number of stocks traded with this code. Besides these ones, another important
indicator is (d) liquidity of a stock, meaning percentage of business days that stock
is negotiated in the stock market exchange during a time period.
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Figure 3.10: Complementary cumulative distribution function for financial volume
of stocks, in log scale.

Figure 3.10 shows the CCDF for financial volume values for all stocks in the entire
32 years. Its shape follows a power law distribution with an estimated exponent
α = 1.32, and shows the striking difference among the stocks with the larger values,
as shown in Table 3.15(a). The α exponent was estimated using the method proposed
by Clauset et. al [33] implemented in Python package powerlaw.

Figure 3.11 shows the CCDF for liquidity indicating a curve that resembles
two lines: the leaning portion of the curve shows that, in general, liquidity values
are separated by orders of magnitude, wheres vertical portion of the curve brings
together a group of about 20 equally liquid stocks with same liquidity. The top 20
are shown in Table 3.15(b).

As a remark about liquidity values, there is a discontinuity on the names of the
stocks mainly at March 16, 1998, when a three letter code for the stocks names
moved to a four letter code. So, value of 0.643 means, actually, 1.0 for period since
March 16, 1998, because that bond appeared in all 5392 dates (business days) after
March 16, 1998. Unfortunately, this discontinuity cannot be easily tracked for all
stocks and was ignored in this study (treated as different stocks).

The Jaccard coefficient using the the top 20 stocks of each ranking, and Spear-
man coefficient ρ using the entire ranking were also computed among all transaction
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Figure 3.11: Complementary cumulative distribution function, for liquidity of stocks,
in log scale.

metrics: liquidity, financial volume, bonds dealt and deals amount, shown in Ta-
ble 3.16. The values indicate that for most pair of metrics there is a good agreement
in both the top 20 and the entire ranking, such as financial volume (F) and deals (D).
This indicates that there is no preferred financial indicator from the set analyzed as
to determine influence between stocks.

3.3.8 Weight and Pagerank vs. transaction volume

Financial volume is an important indicator in stock market analysis. Thus, an
important consideration is the relationship between the financial volume and their
influence with respect to information transfer. Indeed, stocks with have very large
transaction volumes (compared to the average) could be influential in driving the
price variations in the stock market.

Recall that Figure 3.10 shows the distribution of the total traded financial volume
of the stocks. Note that the two top stocks, PETR4 and VALE5, are one order of
magnitude larger than 98% of the smaller stocks. The top 7 stocks with most
traded financial volume are shown in Table 3.17, along their position in according
to the different rankings (recall that the network has 98 stocks).

Table 3.17 shows that financial volume and influence are not correlated. A
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Table 3.15: In order, first 20 positions for (a) financial volume (b) liquidity.

(a) (b)
# stock money negotiated stock liquidity
1 PETR4 258944682957090 BBDC3 0.643
2 VALE5 159003384346700 BBDC4 0.643
3 VALE3 96291893620200 CMIG4 0.643
4 BBDC4 93095339913060 CPLE6 0.643
5 BBAS3 66420109179700 CSNA3 0.643
6 PETR3 63473593815020 ELET3 0.643
7 ITSA4 45900906054600 ELET6 0.643
8 GGBR4 41376134847600 GOAU4 0.643
9 USIM5 38006196242200 ITSA4 0.643
10 CSNA3 32298868621000 PETR3 0.643
11 CMIG4 26426116845400 PETR4 0.643
12 CCRO3 21873335852700 SBSP3 0.643
13 PCAR4 18705702050600 BBAS3 0.642
14 LAME4 15564124239600 CMIG3 0.642
15 ELET3 15135315589000 UNIP6 0.642
16 GOAU4 15006607161759 TELB4 0.641
17 BRAP4 14982982833500 VALE3 0.640
18 ELET6 14552182848500 LAME4 0.639
19 BRKM5 13698972693790 INEP4 0.638
20 EMBR3 13459153406000 CPLE3 0.631

Table 3.16: The 20-size Jaccard j and Spearman ρ among all transaction indicators:
financial volume (F), amount of bonds dealt (B), amount of deals done (D) and
liquidity (L).

L vs.F L vs.D L vs.B F vs.D D vs.B B vs.F
j 0.6 0.65 0.6 0.95 0.45 0.5
ρ 0.397387 0.555200 0.452963 0.802944 0.474220 0.694815

Table 3.17: Position of 7 largest financial volume bonds, in order from left to right,
in the 4 rankings of influence metrics, considering 98 bonds.

Ranking PETR4 VALE5 VALE3 BBDC4 BBAS3 PETR3 ITSA4
incoming weight 80 81 33 70 66 68 53
outgoing weight 88 95 60 90 79 84 76
Pagerank 81 82 33 71 67 70 53
reverse Pagerank 91 85 60 92 82 86 81
HITS authority 77 79 34 68 67 69 55
HITS hub 87 95 63 86 79 81 76
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Table 3.18: Spearman’s ρ between financial volume ranking and influence rankings.

volume vs. volume vs. volume vs.
Metric weight Pagerank HITS
incoming −0.074409 −0.098547 −0.065815
outgoing −0.197317 −0.197993 −0.195073

highly traded stock is neither very influential nor very influenced. In general, those
7 high valuable stocks are in the half bottom of all 98-size influence rankings, around
position 65 for incoming edges and 82 for outgoing edges, considering the arithmetic
mean of the values.

Using the similarity between the full ranking, the Spearman ρ coefficient be-
tween financial volume ranking and each one of the rankings metrics is shown in
Table 3.18. Indeed, the near zero values for the coefficient, ranging from −0.074409

to −0.197993, indicates that there is no correlation between the rankings of traded
volume and its influence in terms of information transfer. The negative values (near
zero) in the Spearman coefficient suggests that there is a weak inversion between
rankings.
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Chapter 4

Characterizing Influence Over Time

The previous chapter considered a single transfer entropy network constructed from
the dataset in order to characterize influence. In particular, the transfer entropy of
the edges were computed using the entire time series of the corresponding nodes.
Under this simplified model lies the assumption that transfer entropy is homogeneous
and consistent over time. Alternatively, this simplified model offers a general or
average description of the system (in terms of influence) over the entire time period.

However, transfer entropy (and other pairwise interaction processes) are most
often not homogeneous or consistent over time. Indeed, they are subject to other
external factors and can vary significantly over time. Consequently, the characteri-
zation of influence will also vary over time. This chapter focuses on understanding
influence over time by considering not a single network but a series of transfer en-
tropy networks, as discussed below. Indeed, it will be shown that top level influence
(the most influential or the most influences) is highly dynamic over time.

4.1 Networks over time

Recall that pairwise transfer entropy is computed using the corresponding time series
over some period of time. Thus, given a time period, the transfer entropy can be
computed for all pairs and a transfer entropy network can be constructed. This idea
will be used to build a sequence of networks. Finally, each transfer entropy network
can be analyzed independently, characterizing its influential and influenced nodes.
The influence characterized in each network will provide a characterization of the
influence over time.

One important consideration is determining the periods of time that will be
used to build the transfer entropy network. In order to allow for a smoother and
more flexible analysis, this work adopts a sliding window approach. The window
determines a period of time over the entire time series that is used to build the
the transfer entropy network. There are two important parameters for the time
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window: size and shift. The size determines the duration of the period of time of a
single window. The shift determines the amount of time that changes between two
consecutive windows, and thus the overlap between them. Window size must not be
too short so that there is not enough data to yield relevant information (estimation
of transfer entropy). Likewise, it must not be too long so that different dynamics
are not merged into a single network.

Figure 4.1 illustrates how two consecutive time windows overlap. The window
size is 24 months (4 periods of 6 months) and the shift is 6 months. This gives an
overlap of 18 months (3 periods of 6 months) between two consecutive windows. The
first window has an additional 6 months before the common period while the second
has 6 months after that common period. Therefore, two consecutive time windows
have 3/4, 75%, of the same raw data, those coming from the daily trading records of
[B]3 shares. This overlap is important because the analysis of each window should
have some continuity with the analysis of its adjacent windows.

Applicable values for window sizes were 12, 24 and 36 months and shift values
were 6, 12, and 24 months. While experiments were performed using a combination
of these values, in the following results window size is defined as 24 months and
window shift is 6 months.

︸ ︷︷ ︸
6months︸ ︷︷ ︸

30months

18months︷ ︸︸ ︷

Figure 4.1: The overlap between two consecutive time windows.

Note that the entire time period of the dataset consists of 384 months (32 years,
from 1986-01 to 2019-12) yielding a total of 65 time windows, as ilustraded in Fig-
ure 4.2. For each time window, a transfer entropy network is generated. Only the
time series within that time window is used to determine the stocks that have enough
liquidity and then calculate the transfer entropy between those pairs, constructing
the transfer entropy network. Note that the number of nodes can vary among the
networks, as this corresponds to number of stocks with enough liquidity within that
time window (soon to be discussed).

4.2 Results over time

The previous chapter used three metrics to assess strength of ties among nodes
and determine influence: node weight, Pagerank and HITS. In that follows, due to
similarity of the results, HITS metric was set aside and all measurements are done
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whole time

1st window
2nd window

... • • •
32th window
33th window
34th window

... • • •
64th window
65th window

Figure 4.2: Operation of 65 sliding time windows, where whole time consists of
384 months and each time windows consists of 24 months, separated by shifts of 6
months.

with node weight and Pagerank. This allows a better focus on other important
aspects concerning dynamics.

4.2.1 Number of stocks by time window

We start by considering the number of stocks in each time window. Recall that for
each time windows, stocks are removed if they do not meet the minimum liquidity
or represent a stock option. Figure 4.3 shows the number of stocks in each time
window, indicating that this number varies significantly and has a growing trend.
The minimum value of 135 is reached in the window #23; a local peak of 762 happens
in window #43; and it ends with a maximum value of 910 in window #65.

4.2.2 Edge weight (transfer entropy) over time

Recall that time window is analyzed independently, so for each time window a net-
work is constructed using the data corresponding to that time window. Figure 4.4
shows the CCDF for the edge weights of 4 time windows (from a total of 65) sep-
arated by 5 year intervals. The figure shows that the average and the tail of the
distributions grows significantly over time.

This growth of information transfer in the network is also illustrated in Figure 4.5
which shows the average edge weight over time. Clearly, information transfer be-
tween stocks have becomes more intense (higher average) and more concentrated
(heavier tail) over time.

Figure 4.6 shows a heatmap (roughly speaking, a sequence of linearized col-
ormaps) where each column represents a time window and each line corresponds
to a directed edge. The color indicates the relative magnitude of the transfer en-
tropy of the edge in that time window with respect to the total information transfer.
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Figure 4.3: Number of liquid stocks (network size) in each time window.

Darker columns indicate higher average values and more concentrated values. The
figure shows that a few specific edges over time have a significant increase in their
information transfer.

Note the abrupt change in the line pattern in the heatmap in Figure 4.6 around
window 25. This was caused by the change of stock names. All stock names changed
on March 16, 1998 and since windows size is 384 months, all windows including this
key date will be affected (i.e., the same stock can appear twice). The first window
affected is #23, beginning at July 1996 and ending at June 1998 whilst the last
window affected is #26, beginning at January 1998 and ending at December 1999.
Subsequent windows only have the new stock names.

Edges can be ranked by the amount of information they transfer. Thus, for each
time window, consider the edge with the largest edge weight. Does this edge remain
a top ranked edge in other time windows? The answer is no in general, and the
result is shown in Figure 4.7. The plot shows all edges that are the top ranked in
a time window and track their relative position in other time windows (among the
top 20). It can be seen as a line chart, where each line represents one edge, that
indicates which position a edge reachs in the ranking of the windows. Although,
as it is not possible to show all edges due great amount of lines, and would not be
readable, only upper part of the chart with 20 positions are shown, and only those
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Figure 4.4: CCDF of edge weights for four different time windows separated by 5
years, in log-scale

edges which reach number 1 position in at least one window. Note that very few
edges that are top 1 in a time window appear as top 20 in a different time window.
Thus, there is significant change in the ranking of the information transfer among
top ranked edges.

More specifically, almost all 65 #1 positions are occupied by different edges, with
the exception of two: edge CPFL4→BBDC3F in windows #27–28 and edge BESP3→BESP4

in windows #29–30. Moreover, edge TELB4F→TELB3F is #1 in window #24 and #2
in window #25, and BESP3→BESP4, just seen before, was also #4 in window #28. In
total, there were 73 appearances of these #1 edges in the top 20 positions along 65
time windows, 12,4% of a total of 591 occurrences. Thus, some edges do maintain
their significance in transferring information over time.

4.2.3 Node weight over time

As previously discussed, the node outgoing and incoming weight reflects its role as
being influential and influenced, respectively. Thus, for each time windows the node
outgoing and incoming weight is computed and used to rank the nodes in that time
window. Do top ranked nodes in a given time window are also top ranked in other
time windows? Figure 4.8 answers this question, as it is a line chart, where each
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Figure 4.5: Average edge weight (information transfer) in each time window.

line represents one share, that indicates which position a share reachs in the rank of
the windows. Although, as it is not possible to show all shares due great amount of
lines, and would not be readable, only upper part of the chart with 20 positions are
shown, and only those shares which reach number 1 position in at least one window.
So, a total of 57 different stocks appear 170 times in this chart showing while the top
position varies significantly, some stocks remain as the most influenced over time.

More precisely, 6 stocks appear as top ranked more than once, but not more
then three times and not always consecutively: FES_4, in windows #20–#22, LAB_2,
in windows #2–#4, LCAM3F, in windows #56 and #63, OGXP3T, in windows #46 and
#47, SMAL11F, in windows #60–#61, and VALE3T, in windows #43 and #50.

Figure 4.9 shows the CCDF of incoming node weight for seven different time
windows in different years. Clearly, the average and the tail of the distribution are
increasing over time, indicating that nodes are becoming more influenced over time.
This increase in incoming node weight is related to the increase in information trans-
fer among network edges, as previously discussed. This increase will also manifest
itself on outgoing node weight, as discussed below.

Recall that outgoing node weight reflects how influential a stock is in the market,
since its outgoing weight represents the total amount of information it transfers to
other nodes. Do influential stocks remain influential over time? Figure 4.10 shows
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Figure 4.6: Relative information transfer of edges across different time windows:
Heatmap of all edges in each time window.

the ranking of nodes that appeared as top ranked (number 1) in at least one time
window. While no stock appears more than once as top ranked, together they
appear 126 times in this chart. Clearly, there is significant change in the top ranked
influential nodes (by outgoing weight), being even more dynamic then top ranked
influenced nodes (by incoming weight).

Figure 4.11 shows the CCDF of outgoing node weight for seven different time
windows in different years. As for incoming node weight, the average and the tail of
the distribution are increasing over time, indicating that nodes are becoming more
influential over time.

4.2.4 Pagerank over time

The weighted version of Pagerank is used to determine the ranking of nodes on the
network corresponding to each time window. Recall that this ranking reflects nodes
that are more influenced by others (larger incoming weight). Again, consider the
stability of nodes in the top of this ranking.

Figure 4.12 shows the ranking of nodes that appear as top ranked (number 1) in
at least one time window, as it is a line chart, where each line represents one share,
that indicates which position a share reachs in the rank of the windows. Although,
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Figure 4.7: Ranking of edges that are the highest ranked edge in at least one time
window.

as it is not possible to show all shares due great amount of lines, and would not
be readable, only upper part of the chart with 20 positions are shown, and only
those shares which reach number 1 position in at least one window. A total of of 56
different stocks appear a total of 173 times in this chart, again showing that there
is significant change among the top ranked influenced nodes. Interestingly, note the
similarity of this dynamics with that of the ranking based on incoming node weights,
shown in Figure 4.8. This indicates that ranking based on incoming node weight is
consistent with Pagerank.

Recall that by reversing the edges of the network and applying Pagerank on this
modified network will yield a ranking that is based on the original outgoing edges
(that have been reversed) and thus will capture how influential are the nodes. This
procedure can be applied to the network of each time window in order to determine
the influential nodes over time. Is there stability among the top ranked influential
nodes?

Figure 4.13 shows the ranking for node that were top ranked (number 1) in at
least one time window. A total of 65 different stocks appear a total of 117 times
in this chart, again indicating significant movement among top ranked influential
stocks. Again, this dynamics is similar to the one found in the top rankings based
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Figure 4.8: Ranking according to incoming edge weight for nodes that are highest
ranked in at least one time window.

on outgoing edge weights, shown in Figure 4.10.
The different rankings for top ranked stocks have a similar characteristic: besides

being very dynamic with many different stocks taking the top ranked position, top
ranked stocks rarely appear in the top 20 positions of other time windows. In order
to quantify this finding, consider a stock that its first appearance in the top 20 is
the top ranked position, as well as a stock that its last appearance in the top 20
is the top ranked position. Table 4.1 shows the number of stocks that have these
characteristics for the four rankings considered. Note that incoming node weight and
Pagerank show very similar statistics, as well as outgoing node weight and reverse
Pagerank. But more interesting, when considering influential nodes (outgoing node
weight and reverse Pagerank), more than 50% of the time (34/64 or 35/65) the last
recorded position of a stock is the top ranked position. In other words, a stock that
reaches the number 1 position of the ranking disappears from the top 20 positions
in subsequent time windows in 50% of cases. It seems that top ranked influential
stocks significantly lose their influence afterwards.
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Figure 4.9: CCDF of incoming node weights for seven different time windows in
different years, in log-scale.

Table 4.1: Number of times that a top ranked (number 1) stock is its first or last
appearance among the top 20 positions in other time windows, for different ranking
metrics.

incoming ordinary outgoing reverse
weight Pagerank weight Pagerank

first time 11 11 28 29
last time 11 10 34 35

4.2.5 Transaction volume over time

This section considers financial indicators over time, using each time window to com-
pute the different financial indicators. This allows understanding of these financial
indicators over time, as well as the stability of highly ranked stocks.

Figures 4.14 and 4.15 show the ranking for stocks that were top ranked (appeared
as number 1) in at least one time windows with respect to financial volume and
amount of stocks dealt, respectively. Interestingly, there is significant stability with
respect to top ranked stocks in terms of financial volume. More precisely, only 7
different stocks appear as top ranked and in total appear 137 times in this chart.
Note that almost all stocks that reach the top ranked position remain in the top
rank for years (2 windows corresponds to one year).
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Figure 4.10: Ranking according to outgoing edge weight for nodes that are highest
ranked in at least one time window.

The top ranked stocks in terms of amount of stocks dealt is also quite stable, as
shown in Figure 4.15. In particular, only 16 different stocks appear in the top ranked
position and in total they appear 213 times in this chart. Interestingly, FNAM11 has
been the top ranked stock since window 50 (for over 7 years) while all other have
disappeared from the top 20.

The stability of top ranked stocks with respect to these two financial indicators
is in sharp contrast to the lack of stability of top ranked influential or influenced
stocks. Clearly, top ranked influence in the stock market is much more dynamic
than top ranked financial indicators.

4.2.6 Node weight and Pagerank vs. transaction volume

An important consideration is the relationship between the rankings produced by
financial indicators and the rankings of influence proposed in this work. This rela-
tionship is investigated across the different time windows using the top 20 ranked
stocks (measured by the Jaccard similarity) as well as the entire ranking (measured
by the Spearman coefficient). Since each time window provides a similarity met-
ric between the rankings, we report on the average and variance across all 65 time
windows.
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Figure 4.11: CCDF of outgoing node weights for seven different time windows in
different years, in log-scale.

Table 4.2 shows the result of comparing the different rankings of influence with
financial volume for the four ranking metrics. Clearly, when considering the top
20 of each ranking, there is no similarity as the average Jaccard coefficient is near
zero when comparing with all four influence rankings. When considering the entire
rankings, results using Spearman coefficient shows a weak negative value in three
rankings (the exception is Pagerank), indicating that such rankings are mostly in-
verted. Thus, financial volume alone also does not capture the overall ranking of
influential and influenced stocks.
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Figure 4.12: Ranking according to Pagerank for nodes that are highest ranked in at
least one time window (influenced nodes).

Table 4.2: Comparing weight and Pagerank rankings with financial volume ranking,
with mean (µ) and variance (σ2) of all 65 windows, using Jaccard and Spearman
coefficients.

Jaccard
incoming metric outgoing metric
weight Pagerank weight Pagerank

µ 0.009231 0.009231 0.012308 0.013077
σ2 0.000992 0.000992 0.001002 0.001021

Spearman

incoming metric outgoing metric
weight Pagerank weight Pagerank

µ −0.375695 0.381413 −0.434775 −0.436110
σ2 0.032814 0.032198 0.015576 0.014370
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Figure 4.13: Ranking according to Pagerank on the reverse network for nodes that
are highest ranked in at least one time window (influential nodes).

Figure 4.14: Evolution of financial volume (aka financial).
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Figure 4.15: Evolution of amount of stocks dealt (aka bonds).

48



Chapter 5

Model for Predicting Mutual
Information

Since the beginning of the Information Age, the amount of data generated and
processes by various sectors of society has increased exponentially. This advance
first fueled by the Big Data movement has more recently lead to the emergence of
the new and promising field of Data Science [34].

Much of the data collected can be naturally modeled by time series. For example,
the daily patterns of different stocks within the stock market, or the hourly patterns
of different memes in online social networks. The dynamics of such time series
are often related to one another, and sometimes in quite unexpected scenarios. For
example, the daily number of searches for the word “influenza” in web search engines
has strong correlation to the number of people infected by influenza [35, 36].

Given the intuitive dependencies that arise between time series dynamics, a
fundamental problem is to characterize and measure their relationship. Being so
fundamental, it is not surprising that there are various approaches and metrics to
measure the dependency between time series. One such approach has originated
from information theory and is well-grounded on probability theory. Within this
approach, metrics such as joint entropy, relative entropy (also known as Kullback-
Leibler distance in statistics), and mutual information have been proposed and are
widely used [37].

Mutual information intuitively measures the amount of information that the
dynamics of a time series contains of another. It measures how much the knowledge
of a time series reduces the uncertainty of another. Mutual information is widely
applied to problems in various fields such as machine learning [38, 39], computer
vision [40, 41], finance [7, 42], and bioinformatics [6, 43].

While the mutual information between two time series is a straightforward cal-
culation, the computational cost is quadratic on the number of symbols present in
the time series. While this is feasible for many scenarios, it can become prohibitive
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when the number of symbols is extremely large, such as in computer images or DNA
sequences. In such scenarios, a model can be used to predict the mutual informa-
tion between the two time series based on a small number of parameters and having
reduced computational cost.

This work proposes a simple and parsimonious model for predicting the mutual
information between two time series. The model is based on two independent and
identically distributed sequences, and has two key parameters: number of symbols,
and probability of copying an element in the other sequence. More importantly, the
model requires a constant amount of time to provide a prediction, independently of
the number of symbols. We derive an analytical expression for the mutual informa-
tion of the model, and show numerical results under synthetic data. Last, we show
a relationship between the proposed prediction model and transfer entropy.

In this chapter, we present a background on mutual information and some related
work; the proposed model to predict mutual information; a numerical evaluation of
the proposed model; and an adaptation of the proposed model to transfer entropy.

5.1 Background and Related Work

The idea of measuring the relationship or dependence between time series or random
objects is quite fundamental since it finds applications in various domains of knowl-
edge. While there are various approaches, one that is widely adopted emerged from
information theory and is grounded on probability theory. This approach started
with the concept of entropy, introduced by Shannon around 70 years ago to mea-
sure information [5]. Given a random variable X and image vX and probability
distribution pX(x), the Shannon entropy HX is defined as

HX = −
∑
x∈vX

pX(x) log2 pX(x) (5.1)

Intuitively, the entropy measures the amount of information that a random variable
carries. The smallest value of zero occurs when there is no randomness (pX(x) = 1,
for some x ∈ vX) while the largest value of log2 |vX | when the randomness is the
largest possible (pX(x) = 1/|vX |, for all x ∈ vX , the uniform distribution).

While the notion of entropy applies to a single random variable, the general
idea can be expanded to accommodate two random variables. In this case, the
goal is to measure the relationship or the influence between the two variables. One
particular extension is mutual information that intuitively captures the amount of
information that one random variable has about the other. In particular, it measures
the deviation of the joint distribution from the product of the marginals. It is defined
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as follows:
MXY =

∑
x∈vX
y ∈vY

pXY (x, y) log2
pXY (x, y)

pX(x)pY (y)
, (5.2)

where, pXY (x, y) denotes the joint-probability distribution, and pX(x), pY (y) the X

and Y marginals, respectively (in the sequel we shall omit the base of log). Note
that if X and Y are independent, then the mutual information is zero. Moreover,
note that MXY is symmetric under the exchange of X and Y .

5.1.1 Mutual information on time series

While the concept of mutual information is defined in the context of random vari-
ables and their probability distributions, the concept is widely used in practice.
Moreover, it is also used to assess the mutual information between time series.
While there are different approaches to measure the mutual information between
two time series, one simple approach leverages the empirical probability distribu-
tions observed in the two time series.

Specifically, let I = (x1, . . . , xn) and J = (y1, . . . , yn) denote two time series of
length n, with xi ∈ vI and yi ∈ vJ for every 1 ≤ i ≤ n. Note that vI and vJ denote
the set of symbols that can appear in time series I and J , respectively. The mutual
information between I and J is defined as

M̂IJ =
∑
x∈vI
y ∈vJ

p̂IJ(x, y) log2
p̂IJ(x, y)

p̂I(x)p̂J(y)
, (5.3)

where, p̂IJ , p̂I and p̂J denote the empirical distributions, respectively. In particular,
for all x ∈ vI and y ∈ vJ , p̂IJ(x, y) = 1/n

∑n
i=1 I(xi = x and yi = y), p̂I(x) =

1/n
∑n

i=1 I(xi = x) and similarly for p̂J , where I(·) denotes the indicator function.
Note that if the sequence of pairs (xi, yi) are independently and identically dis-

tributed according to random variables (X, Y ), then p̂IJ , p̂I and p̂J will converge
to pXY , pX , and pY , respectively, as n goes to infinity (by the law of large num-
bers). Therefore, M̂IJ converges to MXY and we recover the definition provided in
Equation (5.2).

5.1.2 Computational aspects of mutual information

The computation for mutual information as defined in Equation (5.2) requires un-
rolling a double sum, one over the set of values for X and another over the set
of values for Y . Hence, the computational complexity is Θ(|vX ||vY |), where |vX |
and |vY | denote the number of symbols that can be assumed by X and Y , respec-
tively. Thus, this computation has quadratic complexity in the number of symbols,
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assuming |vX | and |vY | differ by only a constant.
Note that computing the mutual information for time series data has the same

complexity, given that that relative frequencies are available, and is given by
Θ(|vI ||vJ |). However, the computation of the relative frequencies require iterat-
ing through the time series, and thus have computational complexity Θ(n), where
n is the length of the time series. Thus, the final computational complexity is
Θ(|vI ||vJ | + n) which is dominated by the first term in scenarios where there are
many symbols.

5.2 Prediction model for mutual information

This section presents two related models that can predict the mutual information
between two time series. The model assumes that values appearing in both time
series come from the same symbol set and their dependency is encoded as follows:
given an entry of one series, the corresponding entry of the other series is either a
copy or it may be re-sampled, according to a given probability. The re-sample pro-
cedure can be performed in two different ways, giving rise to two model variations.
In the first model re-sample occurs using the full set of available symbols (repetition
are thus allowed), whereas, in the second model re-sampled is restricted to the set of
symbols that excludes the symbol assumed by the corresponding entry of the other
series (repetition are not allowed).

The model has two key parameters, s and p; s ≥ 1 is a positive integer denoting
the number different symbols and p ∈ [0, 1] is the re-sampling probability.

With repetitions: Let X be a random variable with uniform distribution on
{1, 2, . . . , s}, and let Y be another random variable defined as follows:

Y =

X with probability 1− p ,

U ∼ Unif{1, . . . , s} with probability p .
(5.4)

In words, with probability 1−p (independent of X) the random variable Y is a copy
of X, whereas with probability p, Y is a uniform random variable on {1, 2, . . . , s}
independent from X. Note that, in this scenario, the variable U is allowed to take
the value of X, thus repetition are allowed even when the value of Y is not copied.

As it turns out, the parameter p can be thought of as a level of dependence
between X and Y . In particular, if p = 1, X e Y are independent, whereas when
p = 0, Y = X.

Proposition 1. Let s ≥ 1 and p ∈ [0, 1]. Let X be a uniform random variable
on {1, . . . , s} and Y defined as in Equation (5.4). Then, the mutual information
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between X and Y is given by:

MXY (s, p) =
1

s
(p+ s(1− p)) log(p+ s(1− p)) +

s− 1

s
p log p . (5.5)

Note that MXY (s, 1) = 0, in accordance with the fact that X and Y are indepen-
dent when p = 1. On the other hand, MXY (s, 0) = limp→0MXY (s, p) = log s, which
corresponds to the Shannon entropy of a uniform random variable on {1, . . . , s} (see,
Section 5.1)1.

Proof. Let us denote vY = vX = {1, . . . , s}. By definition of mutual information
(see, Equation (5.2)) we have that

MXY =
∑
x∈vX
y ∈vY

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
.

Using that X is uniform on vX and that Y is given by Equation (5.4), we obtain:
pXY (x, y) =

p
s2

+ 1−p
s
I(x = y), pX(x) = 1

s
, and pY (y) =

(
1− p+ p

s

)
1
s
+ p

s
s−1
s

= 1
s
;

i.e., the marginal of Y is also uniform on {1, . . . , s}. Thus,

MXY =
s∑

x=1

s∑
y=1

(
p

s2
+

1− p

s
I(x = y)

)
log

(
p
s2
+ 1−p

s
I(x = y)

s−2

)

=
s∑

x=1

s∑
y=1
j ̸=x

p

s2
log (p) +

s∑
x=1

(
p+ s(1− p)

s2

)
log (p+ s(1− p))

=
s− 1

s
p log p+

p+ s(1− p)

s
log(p+ s(1− p)) .

As mentioned above, intuitively the re-sampling probability p may be thought of
as a knob tuning the degree of dependency between X and Y . As it turns out, the
mutual information is indeed monotonically decreasing, showing that higher is the
value of p lower is the mutual information (degree of dependency), with the minimal
value MXY = 0 attained for p = 1. Indeed,

∂

∂p
MXY (s, p) =

(s− 1)(log p− log(s+ p− sp))

s
,

and ∂
∂p
MXY (s, p) < 0 for all p < 1 and s > 1.

1In fact, the mutual information between a random variable X and itself (which is the case
when p = 0) is just its entropy, and thus MXX = HX .
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Without repetition: This model is a minor variation of the previous; as before,
let X be uniform in {1, 2, . . . , s} and Y be now defined as:

Y =

X with probability 1− p ,

U ∼ Unif ({1, . . . , s} \ {X}) with probability p .
(5.6)

In words, with probability 1 − p the random variable Y is a copy of X, whereas
with probability p, Y is a uniform random variable on {1, 2, . . . , s} minus the value
assumed by the variable X. Note that, in this scenario, the range of the variable
U depends on the value of X (repetition is not allowed), and therefore U is not
independent of X. Thus, X and Y are dependent random variable, even when
p = 1. Due to the fact that repetition is forbidden (with probability p), for the
model to be well-defined we shall assume s ≥ 2.

Proposition 2. Let s ≥ 2 and p ∈ [0, 1]. Let X be a uniform random variable
on {1, . . . , s} and Y defined as in Equation (5.6). Then, the mutual information
between X and Y is given by:

MXY (s, p) = (1− p) log(s(1− p)) + p log

(
sp

s− 1

)
. (5.7)

Note that MXY (s, 0) = limp→0MXY (s, p) = log s, thus, also in this case, we have
that the mutual information between X and Y converges to the Shannon entropy
of a uniform random variable on {1, . . . , s} when p → 0. On the other hand,
MXY (s, 1) = log

(
s

s−1

)
. As expected, the mutual information between X and Y is

not equal to 0, when p = 1, because the two random variables are dependent.

Proof. The proof follows the very same steps of the proof of Proposition 1. Simply
observe that in the case without repetition we have: pXY (x, y) =

p
s(s−1)

I(x ̸= y) +
1−p
s
I(x = y), pX(x) = 1

s
, and pY (y) =

1−p
s

+ p
s−1

s−1
s

= 1
s
; i.e., the marginal of Y is

again uniform on {1, . . . , s}. Thus,

MXY =
s∑

x=1

s∑
y=1

(
p

s(s− 1)
I(x ̸= y) +

1− p

s
I(x = y)

)
log

(
p

s(s−1)
I(x ̸= y) + 1−p

s
I(x = y)

s−2

)

=
s∑

x=1

s∑
y=1
y ̸=x

p

s(s− 1)
log

(
sp

s− 1

)
+

s∑
x=1

(
1− p

s

)
log (s(1− p))

= p log

(
sp

s− 1

)
+ (1− p) log(s(1− p)) .
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In the model without repetition, the role of the re-sampling probability is not so
obvious as before. In particular, even when p = 1, MXY (s, 1) = log s

s−1
, implying

that X e Y are not independent. It is quite natural to ask whether, for any given
s, there exists a value of p for which the mutual information is 0. Interestingly,
computing the mutual information setting p = s−1

s
, one obtains MXY (s,

s
s−1

) = 0.
Indeed, the value p = s−1

s
corresponds to the value for which the variable X and Y

are independent. Also, whenever repetition is not allowed, the mutual information
is monotonically decreasing in p in the interval (0, (s− 1)/s), going from the value
log s to 0 and monotonically increasing on ((s − 1)/s, 1), rising from 0 to log s

s−1
.

This can be verified using that

∂

∂p
MXY (s, p) = log

sp

s− 1
− log(s− sp) .

Note that the dependency between X and Y is stronger when p = 0 than when
p = 1.

In Figure 5.1, both Equations (5.5) and (5.7) are plotted for different values
of s and p. Note that, the value of the mutual information at p = 0 (both in
the case with repetition and without) coincides with the Shannon entropy of a
uniform variables on {1, . . . , s}; for example, when s = 16 = 24 the values at
p = 0 is 4. Also notice that the mutual information without repetition (dashed
lines) attains the minimum value (equal to zero) at a value of p = s

s−1
; thus for

example, for s = 2 the minimum is attained at p = 1/2, and for s = 4 at p = 3/4.
On the contrary, when repetition is allowed (solid lines) the minimum (equal to
zero) is always attained at p = 1. Another point worth mentioning, is that the
mutual information with/without repetition tend to be very close to each other
when s grows. For example for s = 32, the two curves are already quite close.
Intuitively, this phenomenon is due to the fact that when s is big enough, re-sampling
with or without repetition are statistically equivalent. Formally, we can prove this
phenomenon noticing that, when s tends to infinity, s

s−1
≈ 1 and 1

s
(p+ s(1− p)) ≈

(1 − p). Thus, using the latter into Equation (5.5) and Equation (5.7) we obtain
that the mutual information with or without repetition tend to each other when s

grows.

5.3 Numerical Evaluation

Let us now consider a sequence of i.i.d. random vectors (Zi)
N
i=1, where Zi = (Xi, Yi).

The joint probability of (Xi, Yi) may be given either by the model with repetition
(Equation (5.4)) or without (Equation (5.6)). We can then compute the mutual
information between the vectors I = (Xi)

N
i=1 and J = (Yi)

N
i=1 as discussed in Sec-
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Figure 5.1: Mutual information between X and Y as a function of number of symbols
(s) and re-sampling probability (p).

tion 5.1.1. In order to do that we use the observation to compute p̂IJ , p̂I and p̂J

(see Equation (5.3)). Clearly, by the Law of Large Numbers, these values converge
to the actual joint probability, and corresponding marginals. Therefore, the mutual
influence between the two series I = (Xi)

N
i=1 and J = (Yi)

N
i=1 converges, as N → ∞,

to the mutual influence of X and Y ; i.e., to Equation (5.5) (when considering the
model with repetition) and to Equation (5.7) (for the model without repetition).

To experimentally observe the convergence of M̂IJ to MXY , we have built sim-
ulations (with/without repetition) using several values for: number of symbols (s),
time series length (N), and number of rounds.

Figure 5.2 and 5.3 depict the empirical mutual information M̂XY with/without
repetition respectively, as a function of p, for s = 128 and different values of time
series length (N = 105, 106, 107, 108), with repetition, and for s = 4 and different
values of time series length (N = 10, 50, 100, 500), without repetition. As it turns
out, a good fit with the analytical mutual information MXY is obtained for N = 107

in first case and 500 in second case.
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Figure 5.2: Empirical mutual information M̂XY (with repetition) with s = 128 for
different time series lengths. The solid line represents the theoretical value for the
mutual information MXY (with repetition).

Figure 5.3: Empirical mutual information M̂XY (without repetition) with s = 4 and
different time series lengths. The solid line represents the mutual information MXY

(without repetition).
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5.4 Relationship to Transfer Entropy

A more recently proposed measure of the dependence between two time series is
transfer entropy [1]. As opposed to mutual information, which uses the static prob-
ability distribution of the two time series (joint and marginals), transfer entropy
takes the dynamical structure of the time series into account. Specifically, transfer
entropy incorporates the dynamical structure by studying the transition probabili-
ties rather than static probabilities (as mutual information).

Intuitively, if the dynamics of a time series I = (x1, . . . , xn) is described by
the transition probabilities p(xi+1|xi) (Markovian dynamics), transfer entropy mea-
sures the amount of information transferred by the knowledge of another time series
J = (y1, . . . , yn), onto the dynamics of I by comparing p(xi+1|xi) and p(xi+1|xi, yi).
Differently from mutual information, transfer entropy is not symmetric, as one time
series might reveal information about another, but not vice-versa.

Transfer entropy has been applied in various domains, and in particular in the
financial sector where time series are derived from the stock market [19, 20]. A
recent book reviews the applications for transfer entropy while also providing some
of its fundamental aspects [2].

While originally defined for time series (i.e., empirical data), transfer entropy
can also be defined in terms of random variables and their (conditional) probability
distributions. Let X = (X1, X2) denote a random vector and Y a random variable.
The transfer entropy from Y to X is defined as follows:

TY→X =
∑

(x1,x2)∈vX×vX
y ∈vY

pXY (x1, x2, y) log
pXY (x2|x1, y)

pX(x2|x1)
, (5.8)

where pXY denotes the joint probability distribution of X and Y , pX the correspond-
ing marginal distribution for X, and vX and vY their images, respectively. Note that
TY→X measures the influence of the knowledge of Y in predicting X2, given that
X1 is known. In essence, transfer entropy measures how much the knowledge of
Y reveals about the transition probability pX(x2|x1). In particular, whenever the
transition probability does not depend on Y , i.e., pX(x2|x1) = pXY (x2|x1, y), for all
x1, x2, y, the transfer entropy between Y and X = (X1, X2) is equal to zero.

Note that the calculation of Equation (5.8) requires unrolling a triple sum across
the possible values taken by X = (X1, X2) and Y . Thus, its computational com-
plexity of computing the transfer entropy directly from its definition is Θ(|vX |2|vY |)
which is cubic on the number of symbols if |vX | and |vY | differ by only a constant
fraction. Therefore, it has a significantly higher complexity than mutual informa-
tion. Thus, a simple model to predict the transfer entropy could be quite useful, if
it can provide an estimation for the transfer entropy in constant time. Could the
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model proposed in this paper do the job?
In order to answer this question, consider the following adaptation of the pro-

posed model. Lets assume that X1 and X2 are i.i.d. with uniform distribution on
{1, 2, . . . , s}, and let Y = X2 with probability 1 − p, or be chosen uniformly at
random on {1, 2, . . . , s} with probability p, independently from X2 and X1. Thus,
Y can exactly predict X2 with probability 1 − p, and intuitively, as p decreases
more information will be transferred from Y to X2. Moreover, since X1 and X2

are independent, X1 has no information about X2, and thus, p and s are the only
parameters of this model.

The model above induces an extremely simplified scenario for measuring the
transfer entropy, as there are no correlation between X1 and X2, but the second
term X2 depends on Y . Thus, the transfer entropy from Y to X in this scenario can
be easily computed, and the next proposition shows that it is equal to the mutual
information between Y and X2.

Proposition 3. Let s ≥ 1 and p ∈ [0, 1]. Let X = (X1, X2) be a uniform random
variable on {1, . . . , s}×{1, . . . , s} and Y as defined above. Then, the transfer entropy
from Y to X is given by:

TY→X(s, p) = MX2,Y (s, p) , (5.9)

where MX2,Y (s, p) is the mutual information between X2 and Y , as given by Equa-
tion (5.5).

Proof. Let v = {1, . . . , s}. Note that if the random vector (X1, X2) is uniformly dis-
tributed on v × v, then X1 and X2 are independent and identically distributed,
with uniform distribution on v. This implies that pX(x2|x1) = pX(x2). Also,
it is not difficult to see that X1 and X2 are conditionally independent given Y ,
i.e., pXY (x1, x2|y) = pXY (x1|y)pXY (x2|y). Since X1 is independent from Y , i.e.,
pXY (x1|y) = pX(x1), we obtain that pXY (x1, x2|y) = pX(x1)pXY (x2|y). Thus,

pXY (x2|x1, y) =
pXY (x2, x1, y)

pXY (x1, y)
=

pXY (x2, x1|y)
pXY (x1|y)

=
pXY (x2|y)pX(x1)

pX(x1)
= pXY (x2|y) .

59



Substituting in Equation (5.8), it follows that

TY→X =
∑

(x1,x2)∈vX×vX
y ∈vY

pXY (x2, x1, y) log
pXY (x2|x1, y)

pX(x2|x1)

=
∑

(x1,x2)∈vX×vX
y ∈vY

pXY (x2, x1, y) log
pXY (x2|y)
pX(x2)

=
∑

x2 ∈vX
y ∈vY

pXY (x2, y) log
pXY (x2, y)

pX(x2)pY (y)

= MX2,Y (s, p) ,

which is the mutual information between X2 and Y .

Thus, the transfer entropy from Y to X of the adaptation of proposed model
is identical to the mutual information between X2 and Y . Another less trivial
adaptation could allow for X2 to depend on X1, and thus provide a more adequate
model for the concept of transfer entropy. However, this further investigation is left
for future work.

It is important to clarify that the model proposed in this chapter was not used to
calculate transfer entropy. Also mutual information was not used to generate data
that was used to build those rankings.
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Chapter 6

Conclusion

Transfer entropy has recently emerged as an ubiquitous metric to measure the influ-
ence between two dynamics, capturing the notion of information transfer. This work
has leveraged this metric to measure influence among shares traded in the Brazilian
stock market exchange, [B]3 (former bm&fbovespa). In particular, we have con-
sidered a 32-years daily record of stock price movement to characterize the influence
(or information transfer) between shares in the market. Beyond computing the pair-
wise transfer entropy among the time series shares, we proposed a network-based
approach to identify both shares that are influential and shares that are influenced
across the market.

We construct transfer entropy network where shares correspond to nodes and
transfer entropy values correspond to weighted directed edges between shares. Clas-
sic network centrality metrics such as Pagerank and HITS were used to rank nodes,
both in terms of incoming and outgoing edges, revealing influential and influenced
shares in the market. We show that a small fraction of the shares have ranking met-
ric values that are significantly larger than average, indicating their prevalence as
either influential or influenced shares. This observation is consistent across rankings.

We also find very good consistency among the three rankings (Weight, Pagerank
and HITS) concerning the most (top 20) influenced shares in the market, while
the agreement concerning the most influential is less pronounced among the three
rankings. Moreover, our analysis indicates that the most traded shares (evaluated
according to their transaction financial volume) in the market are not the most
influential nor the most influenced, indicating a lack of correlation between traded
volume and information transfer.

The initial stock market exchange network was constructed using the entire time
series of price movements, across a period of 32 years. In this situation a share,
identified by its name, is assessed over the whole period. A few 98 shares succeeded
such condition.

Next in the work, we have characterized influence over time by using same
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methodology but considering shorter time series, with 2 years long. Thus, it was
easier to a share to bypass the tough filter of appearing along 21 years to be assessed.
So, it was possible to understanding the persistence of top influential and influenced
shares over time.

An important remark is that it was not an objective of this work to establish any
demonstration of cause and effect between the obtained rankings and external factors
that could lead to these results. Furthermore, that analysis involves knowledge of
economics, financial markets trading etc. One of the main proposals used in this
work was exactly to try not to worry about such external factors to keep focus on
the numbers.

Thus, this research work intended to answer the question of whether information
transfer, here handled as influence and measured using transfer entropy metric,
among a set of nodes, here representing shares of a stock market exchange, could
be revealed from data to enable ranking of those nodes into the most influenced or
most influential ones, over a period of 32 years. Some hypothesis were confirmed
and others refuted, as previously discussed and summarized as follows:

1. Regardless of the influence metric used, be it sum of incoming edge weights ,
pagerank or HITS authority , numerical results and their respective charts ex-
hibit similar shapes for corresponding input data, i.e., the weight sum of in-
coming edges, the pagerank computation and HITS authority calculation are
very similar and, look like they might be interchangeable used to meter in-
fluenced nodes. Likewise, sum of outgoing edge weights , reverse pagerank or
HITS hub show similar patterns, so one could choose any one of them to unveil
influential shares (or nodes).

2. Data unveiled it is possible to realize some shares as hubs and other ones
as authorities with a much higher value for influence than the average, be it
incoming or outgoing. Shares in the top of rankings capture our attention
as candidates to be followed closer. That situation might guide some stock
broker to watch some specific shares in order to trigger some sell/buy order
depending on his strategy, based on values for influence of shares, by instance.

3. As well, data unveiled it is possible to notice some shares which can’t influence
other ones and some that are prove to be influenced by other, as their calcu-
lated valued for influence are very low. Almost like a contrary sense, shares in
the bottom of rankings also capture our attention as candidates to be followed
closer. That situation might be used as an strategy of conservative stock bro-
kers to stay safe during a turbulent stock market time, holding positions with
these stocks.
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4. It is clear from historical data of financial indicators, such as financial volume,
corroborating common sense, that a few stocks move much more money than
others, often participating in stock exchange price indexes, such as Ibovespa,
as in other parts of the world there are indices such as Down Jones (USA),
DAX (Germany), FTSE 100 (United Kingdom) and Nikkei 500 (Japan). They
have their importance into stock market exchange due the amount of money
they move on and, almost as a consequence, their high liquidity, which is useful
to make money as soon as needed by their shareholders.

5. From the data, it was proved that financial indicators (volume, bonds and
deals) are not correlated to influence indicators (node weight, pagerank,
HITS), which sounds to go against common sense, as correlation coefficients
(Jacquard and Spearman) between these rankings reveal a low value. In other
words, the most important shares from the point of view of financial value are
not the ones that appear as the most influenced or the most influential shares.

Finally, in this work we have proposed a simple and parsimonious model for
predicting the mutual information value between two time series without the cost
of an empirical calculation, grounded on two simple parameters: number of symbols
and length of series, besides the with/without repetition model for generating a
copied series for the controlled study.

We have then found an analytical formula for that purpose, proving that, for a
certain combination of large series lengths, according to number of symbols, it works.
Also, we notice that the novel transfer entropy metric, adapted to the proposed
model is identical to the mutual information, although at a higher cost, left for
further studies.

6.1 Future Work

Some important issues directly related to the main object of study were not ad-
dressed here, but could be be addressed in future work, as follows:

1. A single organization deals with several shares in the stock market exchange.
Some shares give owners rights to vote at shareholders’ meetings or preference
in receiving dividends, for example. But share names do not necessarily follow
a strict rule. As long as time passes by those names can change, be split, be
joined or disappear, and even new ones can emerge. And that can happen
individually anytime. But the problem lies in the fact that these changes
cannot be easily tracked. This fact means that a share do not carry a same
name for the whole period of time or that there is no share name that lasts
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for the whole period of time. So, this causes a discontinuity in the time series
every time this name change occurs. Soon, this temporal analysis of a stock
is impaired and, consequently, the temporal analysis of pairs of stocks is also
impaired.

As a suggestion a research could be done to normalize share names over time,
giving them a unique id over the whole period of time, regardless of its name
over time, and, thus, allowing a more accurate analysis for pairs of time series
of shares.

2. This research transform time series of (almost continuous) share prices into
time series of discrete symbols representing shares moves. Using four symbols,
for example, it is possible to capture upward moves, downward moves, lack of
move or a “zero” move. Using more than four discrete symbols it is possible
to represent more than one level of upward moves and, idem, of downward
moves. If we name, say, 3 levels of upward moves as up1 , up2 and up3 , and 3
same 3 levels of downward moves, say, as down1 , down2 and down3 , a pair,
for example, (up1 ,up2 ) is obviously different of (up2 ,up3 ), but they sound
like same thing, which is not considered during analysis.

So, there are some pairs considered completely different, regardless some of
them are next to each other, and in some way are similar. So, some research
about a model that could capture this behavior should be done.

3. Unfortunately, the simple mathematical model proposed to predict the mutual
information and also the transfer entropy between two random variables was
not evaluated with many real data sets.

Research needs to be carried out to verify if the proposed model can pre-
dict mutual information and transfer entropy of real time series, under what
conditions and in which domains.
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[14] LYÓCSA, Š., VỲROST, T., BAUMÖHL, E. “Stock market networks: the dy-
namic conditional correlation approach”, Physica A: Statistical Mechanics
and its Applications, v. 391, n. 16, pp. 4147–4158, 2012.

[15] NAMAKI, A., SHIRAZI, A., RAEI, R., et al. “Network analysis of a financial
market based on genuine correlation and threshold method”, Physica A:
Statistical Mechanics and its Applications, v. 390, n. 21, pp. 3835–3841,
2011.

[16] BOGINSKI, V., BUTENKO, S., PARDALOS, P. M. “Statistical analysis of
financial networks”, Computational Statistics & Data Analysis, v. 48, n. 2,
pp. 431 – 443, 2005. ISSN: 0167-9473. Disponível em: <http://www.

sciencedirect.com/science/article/pii/S0167947304000258>.

[17] ATSALAKIS, G. S., VALAVANIS, K. P. “Surveying stock market forecast-
ing techniques - Soft computing methods”, Expert Systems with Ap-
plications, v. 36, n. 3, pp. 5932 – 5941, 2009. ISSN: 0957-4174.
Disponível em: <http://www.sciencedirect.com/science/article/

pii/S0957417408004417>.

[18] PETELIN, D., ŠINDELÀF, J., PŘIKRYL, J., et al. “Financial modeling us-
ing gaussian process models”, Proceedings of the 6th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Sys-
tems, v. 2, pp. 672–677, 2011. Disponível em: <http://ieeexplore.

ieee.org/document/6072854/>.

66

http://www.sciencedirect.com/science/article/pii/S0167947304000258
http://www.sciencedirect.com/science/article/pii/S0167947304000258
http://www.sciencedirect.com/science/article/pii/S0957417408004417
http://www.sciencedirect.com/science/article/pii/S0957417408004417
http://ieeexplore.ieee.org/document/6072854/
http://ieeexplore.ieee.org/document/6072854/


[19] YANG, P., SHANG, P., LIN, A. “Financial time series analysis based on ef-
fective phase transfer entropy”, Physica A: Statistical Mechanics and its
Applications, v. 468, pp. 398–408, 2017.

[20] KWON, O., YANG, J.-S. “Information flow between stock indices”, Euro-
physics Letters, v. 82, n. 6, pp. 68003–p1–68003–p4, Jun 2008. Disponível
em: <http://iopscience.iop.org/article/10.1209/0295-5075/82/

68003>.

[21] MARSCHINSKI, R., KANTZ, H. “Analysing the information flow between
financial times series”, The European Physical Journal B, v. 30, pp. 275–
281, 2002.

[22] KORBEL, J., JIANG, X., ZHENG, B. “Transfer entropy between communities
in complex networks”, ArXiv e-prints, jun. 2017.

[23] HE, J., SHANG, P. “Comparison of transfer entropy methods for financial
time series”, Physica A: Statistical Mechanics and its Applications, v. 482,
pp. 772–785, 2017.

[24] BRIN, S., PAGE, L. “The anatomy of a large-scale hypertextual Web search
engine”, Computer Networks and ISDN Systems, v. 30, n. 1, pp. 107 – 117,
1998. ISSN: 0169-7552. Disponível em: <http://www.sciencedirect.

com/science/article/pii/S016975529800110X>.

[25] PAGE, L., BRIN, S., MOTWANI, R., et al. The PageRank citation ranking:
bringing order to the web. Technical Report 1999-66, Stanford University,
November 1999. Disponível em: <http://ilpubs.stanford.edu:8090/

422/>.

[26] KLEINBERG, J. M. “Authoritative sources in a hyperlinked environment”,
Journal of the ACM (JACM), v. 46, n. 5, pp. 604–632, 1999.

[27] CHAKRABARTI, S., DOM, B., RAGHAVAN, P., et al. “Automatic resource
compilation by analyzing hyperlink structure and associated text”, Com-
puter Networks and ISDN Systems, v. 30, n. 1, pp. 65–74, april 1998.
Disponível em: <https://www.sciencedirect.com/science/article/

pii/S0169755298000877>. Proceedings of the Seventh International
World Wide Web Conference.

[28] XING, W., GHORBANI, A. “Weighted pagerank algorithm”. In: Communica-
tion Networks and Services Research, 2004. Proceedings. Second Annual
Conference on, pp. 305–314. IEEE, 2004.

67

http://iopscience.iop.org/article/10.1209/0295-5075/82/68003
http://iopscience.iop.org/article/10.1209/0295-5075/82/68003
http://www.sciencedirect.com/science/article/pii/S016975529800110X
http://www.sciencedirect.com/science/article/pii/S016975529800110X
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://www.sciencedirect.com/science/article/pii/S0169755298000877
https://www.sciencedirect.com/science/article/pii/S0169755298000877


[29] LI, L., SHANG, Y., ZHANG, W. “Improvement of HITS-based algorithms on
web documents”. In: Proc. Int. Conf. on World Wide Web, pp. 527–535,
2002. ISBN: 1-58113-449-5.

[30] ZHANG, X., YU, H., ZHANG, C., et al. “An improved weighted HITS al-
gorithm based on similarity and popularity”. In: Second International
Multi-Symposiums on Computer and Computational Sciences (IMSCCS
2007), pp. 477–480, Aug 2007.

[31] “Bolsa de Valores, Mercadorias e Futuros do Estado de São Paulo”. 2017.
Disponível em: <http://www.b3.com.br/>.

[32] “Séries históricas de aćões da B3”. 2022. Disponível em: <https://www.

b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/

market-data/historico/mercado-a-vista/series-historicas/>.

[33] CLAUSET, A., SHALIZI, C. R., NEWMAN, M. E. J. “Power-Law Distributions
in Empirical Data”, SIAM Review, v. 51, n. 4, pp. 661–703, 2009.

[34] DONOHO, D. “50 years of data science”, Journal of Computational and Graph-
ical Statistics, v. 26, n. 4, pp. 745–766, 2017.

[35] DUGAS, A. F., HSIEH, Y.-H., LEVIN, S. R., et al. “Google Flu Trends: corre-
lation with emergency department influenza rates and crowding metrics”,
Clinical infectious diseases, v. 54, n. 4, pp. 463–469, 2012.

[36] LAZER, D., KENNEDY, R., KING, G., et al. “The parable of Google Flu:
traps in big data analysis”, Science, v. 343, n. 6176, pp. 1203–1205, 2014.

[37] COVER, T. M., THOMAS, J. A. Elements of information theory. 605 Third
Avenue, New York, NY, USA, John Wiley & Sons, 2012.

[38] BENNASAR, M., HICKS, Y., SETCHI, R. “Feature selection using joint mu-
tual information maximisation”, Expert Systems with Applications, v. 42,
n. 22, pp. 8520–8532, 2015.

[39] BATTITI, R. “Using mutual information for selecting features in supervised
neural net learning”, IEEE Transactions on neural networks, v. 5, n. 4,
pp. 537–550, 1994.

[40] HIRSCHMULLER, H. “Accurate and efficient stereo processing by semi-global
matching and mutual information”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’05), v. 2, pp. 807–814. IEEE,
2005.

68

http://www.b3.com.br/
https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/historico/mercado-a-vista/series-historicas/
https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/historico/mercado-a-vista/series-historicas/
https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/historico/mercado-a-vista/series-historicas/


[41] PLUIM, J. P., MAINTZ, J. A., VIERGEVER, M. A. “Mutual-information-
based registration of medical images: a survey”, IEEE transactions on
medical imaging, v. 22, n. 8, pp. 986–1004, 2003.

[42] HLAVÁČKOVÁ-SCHINDLER, K., PALUŠ, M., VEJMELKA, M., et al.
“Causality detection based on information-theoretic approaches in time
series analysis”, Physics Reports, v. 441, n. 1, pp. 1–46, 2007.

[43] SONG, L., LANGFELDER, P., HORVATH, S. “Comparison of co-expression
measures: mutual information, correlation, and model based indices”,
BMC bioinformatics, v. 13, n. 1, pp. 328, 2012.

69


	List of Figures
	List of Tables
	Introduction
	Objective
	Main contributions
	Organization

	Background and Related Work
	Shannon Entropy
	Definition

	Mutual Information
	Definition

	Transfer entropy
	Definition
	Computing Transfer Entropy
	Applications of transfer entropy

	Network Centrality
	Node Ranking in Networks
	Pagerank
	HITS

	Stock Market Analysis

	Characterizing Influence using Transfer Entropy Networks
	Methodology
	Time series
	Movement symbols
	Pairwise transfer entropy
	Network and ranking
	Similarity coefficients

	Dataset Details
	Dealt stocks and records
	Daily basis time series

	Results on Overall Network
	Edges weight: transfer entropy values between stocks
	Node weight
	Pagerank
	Authorities and hubs
	Self-considered metrics
	Comparison among ranking methods
	Transaction volume
	Weight and Pagerank vs. transaction volume


	Characterizing Influence Over Time
	Networks over time
	Results over time
	Number of stocks by time window
	Edge weight (transfer entropy) over time
	Node weight over time
	Pagerank over time
	Transaction volume over time
	Node weight and Pagerank vs. transaction volume


	Model for Predicting Mutual Information
	Background and Related Work
	Mutual information on time series
	Computational aspects of mutual information

	Prediction model for mutual information
	Numerical Evaluation
	Relationship to Transfer Entropy

	Conclusion
	Future Work

	References

