On the pebbling numbers of Flower, Blanuša and Watkins snarks*

Matheus Adauto ${ }^{\text {a }}$, Celina de Figueiredo ${ }^{\text {a }}$, Glenn Hurlbert ${ }^{\text {b }}$, Diana Sasaki ${ }^{\text {c }}$
${ }^{a}$ Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{b}$ Virginia Commonwealth University, Richmond, United States of America
${ }^{c}$ Rio de Janeiro State University, Rio de Janeiro, Brazil

Abstract

Graph pebbling is a game played on graphs with pebbles on their vertices. A pebbling move removes two pebbles from one vertex and places one pebble on an adjacent vertex. The pebbling number $\pi(G)$ is the smallest t so that from any initial configuration of t pebbles it is possible, after a sequence of pebbling moves, to place a pebble on any given target vertex. In this paper, we provide the first results on the pebbling numbers of snarks. Until now, only the Petersen graph had its pebbling number correctly established, although attempts had been made for the Flower and Watkins snarks.

Keywords: Graph Pebbling, Snarks, Diameter, Girth

1. Introduction

Graph pebbling is a mathematical game or puzzle that involves moving pebbles along the edges of a connected graph, subject to certain rules. The objective of the game is to place a certain number of pebbles on specific vertices of the graph, typically with the aim of reaching a particular configuration of pebbles or minimizing the number of moves required to achieve a given configuration. Various forms of graph pebbling have applications in number theory, computer science, physics, and combinatorial optimization, and have been studied extensively in mathematics (see [10]).

In this paper, $G=(V, E)$ is always a simple connected graph. The numbers of vertices and edges of G and its diameter are denoted by $n(G), e(G)$, and $D(G)$, respectively. For a vertex w and positive integer k, denote by $N_{k}[w]$ the set of all vertices that are at a distance at most k from w. The girth is the length of a shortest cycle in the graph.

[^0]
1.1. Pebbling number

A configuration C on a graph G is a function $C: V(G) \rightarrow \mathbb{N}$. The value $C(v)$ represents the number of pebbles at vertex v. A vertex with zero, one, at most one, or at least two pebbles on it is called empty, a singleton, small, or big, respectively. The size $|C|$ of a configuration C is the total number of pebbles on G. A pebbling move consists of removing two pebbles from a vertex and placing one pebble on an adjacent vertex. For a target vertex r, C is r solvable if one can place a pebble on r after a sequence of pebbling moves, and is r-unsolvable otherwise. It was shown in $[11,12]$ that deciding if C is r-solvable on G is NP-complete. The pebbling number $\pi(G, r)$ is the minimum number t such that every configuration of size t is r-solvable. The pebbling number of G equals $\pi(G)=\max _{r} \pi(G, r)$.

The basic lower and upper bounds for every graph are $\max \left\{n(G), 2^{D(G)}\right\} \leq$ $\pi(G) \leq(n(G)-D(G))\left(2^{D(G)}-1\right)+1[4,7]$. A graph is called Class 0 if $\pi(G)=$ $n(G)$. Complete graphs, cubes, the Petersen graph, and many other graphs are known to be Class 0 , whereas the cycle graphs C_{n} satisfy: $\pi\left(C_{2 d}\right)=2^{d}$ and $\pi\left(C_{2 d+1}\right)=\left\lceil\left(2^{d+2}-1\right) / 3\right\rceil$. It is not yet known whether or not there exist necessary and sufficient conditions for a graph to be Class 0 .

1.2. Snarks

We define the important family of snark graphs which are cubic, bridgeless, 4-edge-chromatic graphs. They are important for being related to the Four Color Theorem, which holds if and only if no snark is planar [17]. In [1] we find the origins of the study of the pebbling numbers of chordal graphs. Here we begin the systematic study of the pebbling numbers of snarks.

The Petersen graph is the smallest snark, having 10 vertices, and was discovered in 1898 [14]. Since then, many others have been discovered. There are no snarks of order $12,14,16$, whereas snarks exist for any even order greater than 16. The Blanuša snarks are the two snarks discovered by Danilo Blanuša in 1946 [3], when only the Petersen snark was known [3]. Both Blanuša 1 and Blanuša 2 snarks have 18 vertices, diameter 4 , and girth 5 . In this work, they will be denoted by B_{1} and B_{2}, respectively. Myriam Preissmann proved in 1982 that there are exactly two snarks of order 18 [15]. We depict in Figure 3 the Blanuša 2 snark together with a vertex labelling that makes clear that the graph was obtained from two copies of the Petersen snark. See [3] for a thorough history and Table 1 for a list of several well known snarks.

For odd $m=2 k+1 \geq 3$, we define the $m^{\text {th }}$ Flower snark J_{m} as follows (see Figure 1 for an example with $m=5$) [2]. For each $i \in \pm\{0,1, \ldots, k\}$ we have vertices v_{i}, x_{i}, and y_{i} all adjacent to z_{i}. Thus the number of vertices of the $m^{\text {th }}$ Flower snark is $n\left(J_{m}\right)=4 m$. The vertices $\left\{v_{i}\right\}$ form the cycle C_{m}, with adjacencies given by consecutive indices modulo m. The vertices $\left\{x_{i}\right\}$ (resp. $\left.\left\{y_{i}\right\}\right)$ form a path given by the cycle without the edge $x_{k} x_{-k}$ (resp. $y_{k} y_{-k}$). Finally, we add the edges $x_{k} y_{-k}$ and $y_{k} x_{-k}$ so that the two paths now form one cycle $C_{2 m}$. It is easy to see that J_{m} has m-fold rotational symmetry, with a necessary twist, along with the reflective symmetry that negates subscripts; that

Figure 1: The graph J_{5} and its (green) v_{0}-unsolvable configuration C of size 22, which equals the configuration C^{*} with an extra pebble on z_{-1}.
is, the automorphisms of J_{m} yield three vertex orbits. Thus the only targets necessary to contemplate are, without loss of generality, v_{0}, z_{0}, and x_{0}. Thus the Flower snark $J_{m}(m=2 k+1)$ has diameter $k+2$, as well as girth m for $m \in\{3,5\}$ and 6 if $m \geq 7$.

The Watkins snark is the snark with 50 vertices discovered by John J. Watkins in 1989 [18] depicted in Figure 4. The Watkins snark has diameter 7 and girth 5.

1.3. Results

It is known that the Petersen graph is Class 0 [7]. It is the smallest snark and was the only one whose pebbling number was known. We use the Small Neighborhood Lemma presented in Section 2 to prove that the Petersen graph is the only Class 0 snark with at least 23 vertices or girth at least 5 .

Theorem 1. The only Class 0 snark of girth at least 5 is the Petersen graph. Moreover, if G is a Class 0 snark with girth at most 4, then $n(G) \leq 22$.

We also prove the following bounds on the pebbling numbers of snarks. Recall that the basic lower and upper bounds for a graph are $\max \{n(G)$, $\left.2^{D(G)}\right\} \leq \pi(G) \leq(n(G)-D(G))\left(2^{D(G)}-1\right)+1$. For the Flower snarks, this means that $12 \leq \pi\left(J_{3}\right) \leq 64,20 \leq \pi\left(J_{5}\right) \leq 241$, and $32 \leq \pi\left(J_{7}\right) \leq 691$. Theorem 1 improves the J_{5} lower bound to $21 \leq \pi\left(J_{5}\right)$. Theorem 2 provides much tighter bounds, and corrects a claim of [13] that, for $m \geq 5, \pi\left(J_{m}\right)=4 m+1$.

In fact, Theorem 2 identifies the correct order of magnitude $\left(2^{k+2}\right)$ of $\pi\left(J_{m}\right)$ as m grows, up to some constant between 1 and 1.8.

Theorem 2. We have $\pi\left(J_{3}\right) \leq 13,23 \leq \pi\left(J_{5}\right) \leq 30,41 \leq \pi\left(J_{7}\right) \leq 61$, and for all $k \geq 3$ with $m=2 k+1$, we have $2^{k+2}+9 \leq \pi\left(J_{m}\right) \leq\left\lfloor 2^{k+2} 9 / 5+2 k-18 / 5\right\rfloor+1$.

For the Blanuša snarks the basic bounds give $18 \leq \pi\left(B_{i}\right) \leq 211$. Theorem 1 improves the B_{i} lower bound to $19 \leq \pi\left(B_{i}\right)$. Theorem 3 provides much tighter bounds for B_{i}.
Theorem 3. We have $23 \leq \pi\left(B_{i}\right) \leq 34$.
For the Watkins snark W the basic bounds give $128 \leq \pi(W) \leq 5462$. Theorem 4 provides a tighter lower bound, and corrects a claim of [16] that $\pi(W)=166$.
Theorem 4. The pebbling number of the Watkins graph W satisfies $183 \leq$ $\pi(W)$.

2. Techniques

2.1. For lower bounds

Given a graph G with vertices u and v such that $N_{a}[u] \cap N_{b}[v]=\emptyset$ for some non-negative integers a and b. Define the configuration $C^{*}=C_{u, v}^{*}$ by $C^{*}(v)=2^{a+b+1}-1, C^{*}(x)=0$ for all $x \in\left(N_{a}[u] \cup N_{b}[v]\right)-\{v\}$, and $C^{*}(x)=1$ otherwise. The authors of [6] proved the following lemma (SNL) to provide a lower bound on $\pi(G)$.

Lemma 1. (Small Neighborhood Lemma [6]) Let G be a graph and $u, v \in V(G)$ such that $N_{a}[u] \cap N_{b}[v]=\emptyset$ for some non-negative integers a and b. Then C^{*} is u-unsolvable. Consequently, $\pi(G) \geq \pi(G, u)>\left|C^{*}\right|$. In particular, if $N_{a}[u] \cap N_{b}[v]=\emptyset$ and $\left|N_{a}[u] \cup N_{b}[v]\right|<2^{a+b+1}$, then G is not Class 0.

One can see how SNL is, in some sense, a sharpening of the basic exponential lower bound. One immediate consequence we will use here is the following corollary.

Corollary 1. If G is an n-vertex cubic graph, with diameter at least 4 and girth at least 5, then there is an unsolvable configuration of size $15+(n-14)$.

Another consequence we will use here is the following corollary.
Corollary 2 ([6]). If G is an n-vertex Class 0 graph with diameter at least 3, then $e(G) \geq \frac{5}{3} n-\frac{11}{3}$.

A graph H is a retract of a graph G if there is a function $\phi: V(G) \rightarrow V(H)$ that preserves edges; that is, if $u v \in E(G)$ then $\phi(u) \phi(v) \in E(H)$. For example, the 5 -cycle is a retract of the Petersen graph. We will make use of the following lemma in the proof of the lower bound of Theorem 3, since a portion of the Blanuša graph has a C_{9} retract, and of the lower bound of Theorem 4, since a portion of the Watkins graph has a C_{15} retract.

Lemma 2 (Retract Lemma [5]). If H is a retract of G, then $\pi(H) \leq \pi(G)$.
The idea of the proof of Lemma 2 is straightforward, as any solution along edges in G has a corresponding solution along its retracted edges in H.

Another helpful lemma uses the notion of pebble weights. Given a target vertex r, define the r-weight of a pebble on a vertex v to be 2^{-k}, where k is the distance from v to r. Furthermore, the r-weight of a configuration C is defined to be the sum of the r-weights of its pebbles.

Lemma 3 ([8]). Suppose that a configuration C on a graph G is r-solvable for some target vertex r. Then C has r-weight at least 1 .

The lemma is proved by noting that a pebbling step never increases the r weight of a configuration, and any configuration with a pebble on the target has r-weight at least 1 . In fact, the r-weight is maintained if and only if the pebbling step decreases the distance to the target r. Hence, when G is a path and r is one of its leaves, r-weight at least one characterizes r-solvable configurations, which is not true for general graphs. However, a generalization of this r-weight concept is introduced as weights for upper bounds in Section 2.2.

2.2. For upper bounds

Here we describe a linear optimization approach introduced in [9]. For an unknown configuration C on a graph G with target vertex r, we consider a connected subgraph H of G that contains r. The intention is to derive a linear inequality in the variables $C(v)$ with $v \in V(H)$ that is satisfied whenever C is r-unsolvable. Given a collection of such inequalities over various choices of H, we can then maximize $|C|=\sum_{v \in V(G)} C(v)$ subject to those constraints, assuming that $C(v) \geq 0$ for all $v \in V(G)$. The optimum value of this linear program is therefore a strict lower bound on $\pi(G, r)$. This value may be tight for some graphs; however, this is really an integer optimization problem, and so typically will yield a result less than the truth. This idea was successfully carried out when H is a tree (generalized to some non-trees in [6]). We introduce the method now.

Let T be a subtree of a graph G rooted at vertex r, with at least two vertices. For a vertex $v \in V(T)$ let v^{+}denote the parent of v; i.e. the T-neighbor of v that is one step closer to r (we also say that v is a child of v^{+}). We call T an r-strategy when we associate with it a non-negative weight function w_{T} with the property that $w_{T}(r)=0$ and $w_{T}\left(v^{+}\right) \geq 2 w_{T}(v)$ for every other vertex v that is not a neighbor of r (and $w_{T}(v)=0$ for vertices not in T). Let \boldsymbol{T} be the configuration with $\boldsymbol{T}(r)=0, \boldsymbol{T}(v)=1$ for all other $v \in V(T)$, and $\boldsymbol{T}(v)=0$ everywhere else. We now define the T-weight of any configuration C (including $\boldsymbol{T})$ by $w_{T}(C)=\sum_{v \in V} w_{T}(v) C(v)$. The following lemma (WFL) is used to provide an upper bound on $\pi(G)$.

Lemma 4 (Weight Function Lemma [9]). Let T be an r-strategy of G with associated weight function w_{T}. Suppose that C is an r-unsolvable configuration of pebbles on $V(G)$. Then $w_{T}(C) \leq w_{T}(\boldsymbol{T})$.

One way to view T-weights as a generalization of r-weights is as follows. Consider when T is a path $v_{0} v_{1} \cdots v_{n}$ and let C be a v_{0}-unsolvable configuration on T. Then notice that the formula for v_{0}-weights of pebbles on the vertices of T form a valid weight function w_{T} if we re-weight v_{0} at 0 instead of 1 , which changes nothing in practice because $C\left(v_{0}\right)=0$. In this case, WFL states that $\sum_{i=1}^{n} C\left(v_{i}\right) 2^{-i} \leq \sum_{i=1}^{n} 2^{-i}=1-2^{-n}$. Because C is a non-negative integervalued function, this is equivalent to $\sum_{i=1}^{n} C\left(v_{i}\right) 2^{-i}<1$; i.e. the v_{0}-weight of C is less than one. Furthermore, the r-weights of a general graph G can be thought of as the T-weights of a breadth-first-search spanning tree T of G, rooted at the target vertex r. Then an r-unsolvable configuration C satisfies the WFL inequality and so, by retracting T onto a path of length equal to the eccentricity of r, we obtain the aforementioned r-weight condition for C.

3. Proofs

3.1. Proof of Theorem 1

Note that every snark has exactly $3 n / 2$ edges, and that the Petersen graph has diameter equal to 2 and all other snarks have diameter at least 3. Then, by Corollary 2 , if $n(G)>22$ we get $3 n / 2<(5 n-11) / 3$. Therefore, every snark with $n(G)>22$ is not Class 0 . The remaining non-Petersen snarks with fewer vertices and girth at least 5 (among them, the Flower J_{5}, the Blanušas, and the Loupekines) all have diameter $4>2+1$, so for any vertices u and v at distance 4 from each other we have $\left|N_{2}[u]\right|=10$ and $\left|N_{1}[v]\right|=4$. Thus $\left|N_{2}[u] \cup N_{1}[v]\right|=14<16=2^{2+1+1}$, and so none of these graphs are Class 0 by SNL.

3.2. Proof of Theorem 2

First we prove the lower bounds. For these we only need to display a configuration, of size one less than the lower bound, that cannot reach some target.

The diameter of the Flower graph $J_{m}, m=2 k+1$, is $k+2$, and the distance between v_{0} and x_{k} is $k+2$. The rotational symmetry of the Flower graph J_{m} gives $2 m$ petals, each of which is in a 6 -cycle.

For J_{5}, the diameter is 4 and the girth is 5 . The v_{0}-unsolvable configuration $C_{v_{0}, x_{2}}^{*}$, that is provided by SNL for $a=2$ and $b=1$ places 15 pebbles on x_{2} and one pebble on each of the 6 vertices not in set $N_{2}\left[v_{0}\right] \cap N\left[x_{2}\right]$, and has size 21. Notice that we can add a pebble to z_{-1} to obtain the configuration C in Figure 1. It is not difficult to argue that C is also v_{0}-unsolvable, since any supposed solution would need to use the pebble at z_{-1}.

For $m \geq 7$ (i.e. $k \geq 3$), we will use $C^{*}=C_{v_{0}, x_{k}}^{*}$ only. In this case, the girth is equal to 6 . So $\left|N_{2}\left[v_{0}\right]\right|=1+3+6$, and for any integer $3 \leq i \leq k$, the set of vertices at distance i from v_{0} is $\left\{v_{i}, v_{-i}, z_{i+1}, z_{-(i+1)}, x_{i-2}, y_{i-2}, x_{-(i-2)}, y_{-(i-2)}\right\}$. Hence, for any integer $2 \leq i \leq k$, we have $\left|N_{i}\left[v_{0}\right]\right|=1+3+6+(i-2) 8=8 i-6$. From this we can compute $\left|C^{*}\right|=\left(2^{a+b+1}-1\right)+\left(n-\left|N_{a}\left[v_{0}\right]\right|-\left|N_{b}\left[x_{k}\right]\right|\right)$. In the case that k is even we use $a=k / 2$ and $b=a+1$, while if k is odd we use $a=b=(k+1) / 2$. In either case we obtain $\left|C^{*}\right|=2^{k+2}+8$.

Now we prove the upper bounds, using WFL. We shall define strategies with root z_{0}. We refer to the Appendix for the strategies with roots v_{0} and x_{0}, that give values not larger than the ones given by strategies presented for root z_{0}.

For J_{3}, we define three z_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

- $\boldsymbol{T}_{0}\left(v_{0}, v_{1}, v_{-1}, z_{1}, z_{-1}, x_{1}, y_{1}, x_{-1}, y_{-1}\right)=(8,4,4,2,2,1,1,1,1)$,
- $\boldsymbol{T}_{1}\left(x_{0}, x_{1}, x_{-1}, z_{1}, z_{-1}, v_{-1}\right)=(8,4,4,1,2,1)$ and
- $\boldsymbol{T}_{-1}\left(y_{0}, y_{1}, y_{-1}, z_{1}, z_{-1}, v_{1}\right)=(8,4,4,2,1,1)$,
giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 64 / 5$ whenever C is v_{0}-unsolvable. Hence $\pi\left(J_{3}, z_{0}\right) \leq 13$. Using the strategies presented in the Appendix for targets v_{0} and x_{0}, we may conclude that $\pi\left(J_{3}\right) \leq 13$.

For J_{5}, we define three z_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

- $\boldsymbol{T}_{0}\left(v_{0}, v_{1}, v_{-1}, v_{2}, v_{-2}, z_{1}, z_{-1}, z_{2}, z_{-2}, x_{2}, y_{2}, x_{-2}, y_{-2}\right)=(16,8,8,4,4,4,4$,
$2,2,1,1,1,1)$,
- $\boldsymbol{T}_{1}\left(x_{0}, x_{1}, x_{-1}, x_{2}, x_{-2}, z_{2}, z_{-2}, v_{2}, z_{1}\right)=(16,8,8,4,4,2,1,1,1)$ and
- $\boldsymbol{T}_{-1}\left(y_{0}, y_{1}, y_{-1}, y_{2}, y_{-2}, z_{2}, z_{-2}, v_{-2}, z_{-1}\right)=(16,8,8,4,4,2,1,1,1)$,
giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 146 / 5$ whenever C is v_{0}-unsolvable. Hence $\pi\left(J_{5}, z_{0}\right) \leq 30$. Using the strategies presented in the Appendix for targets v_{0} and x_{0}, we may conclude that $\pi\left(J_{5}\right) \leq 30$.

For $m \geq 5$ (i.e. $k \geq 2$), please refer to Figure 2 to see $m=11$. Using the same pattern we have defined above for the three z_{0}-strategies for J_{5}, we define three corresponding z_{0}-strategies by

- $\boldsymbol{T}_{0}\left(v_{0}, v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{k}, v_{-k}, z_{k}, z_{-k}, x_{k}, y_{k}, x_{-k}, y_{-k}\right)$ $=\left(2^{k+2}, 2^{k+1}, 2^{k+1}, 2^{k}, 2^{k}, \ldots, 2,2,1,1,1,1\right)$ and $\boldsymbol{T}_{0}\left(z_{1}, z_{-1}, \ldots, z_{k-2}, z_{2-k}, z_{k-1}, z_{1-k}\right)=(5,5, \ldots, 5,5,4,4)$;
- $\boldsymbol{T}_{1}\left(x_{0}, x_{1}, x_{-1}, \ldots, x_{k}, x_{-k}, z_{k}, v_{k}\right)$ $=\left(2^{k+2}, 2^{k+1}, 2^{k+1}, \ldots, 4,4,2,1\right)$ and $\boldsymbol{T}_{1}\left(z_{2-k}, z_{1-k}\right)=(1,1)$; and
- $\boldsymbol{T}_{-1}\left(y_{0}, y_{1}, y_{-1}, \ldots, y_{k}, y_{-k}, z_{-k}, v_{-k}\right)$ $=\left(2^{k+2}, 2^{k+1}, 2^{k+1}, \ldots, 4,4,2,1\right)$ and $\boldsymbol{T}_{-1}\left(z_{k-2}, z_{k-1}\right)=(1,1)$.
The sum $\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}$ has 3 vertices with coefficient $2^{k+2}, 6$ with 2^{i} (for each $3 \leq i \leq k+1$), and $2 k+6$ with coefficient 5 , giving rise to the inequality

$$
\begin{aligned}
5|C| & \leq \boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1} \\
& =3\left(2^{k+2}\right)+6\left(2^{3}+\cdots+2^{k+1}\right)+5(2 k+6) \\
& =6\left(2^{3}+\cdots+2^{k+2}\right)-3\left(2^{k+2}\right)+5(2 k+6) \\
& =48\left(2^{k}-1\right)-3\left(2^{k+2}\right)+10 k+30 \\
& =36\left(2^{k}\right)+10 k-18 \\
& =9\left(2^{k+2}\right)+10 k-18,
\end{aligned}
$$

whenever C is z_{0}-unsolvable. Hence $|C| \leq 2^{k+2} 9 / 5+2 k-18 / 5$, and so $\pi\left(J_{m}, z_{0}\right) \leq$ $\left\lfloor 2^{k+2} 9 / 5+2 k-18 / 5\right\rfloor+1$. Using the strategies presented in the Appendix for targets v_{0} and x_{0}, we may conclude that $\pi\left(J_{m}\right) \leq\left\lfloor 2^{k+2} 9 / 5+2 k-18 / 5\right\rfloor+1$. In particular, $\pi\left(J_{7}\right) \leq 61$.

Figure 2: The graph J_{11} and its three z_{0}-strategies \boldsymbol{T}_{0} (in red), \boldsymbol{T}_{1} (in blue), and \boldsymbol{T}_{-1} (in green).

3.3. Proof of Theorem 3

First we prove the lower bounds. Corollary 1 gives the same lower bound $20 \leq \pi(G)$, for an arbitrary diameter 4 , girth 5 , cubic graph G with 18 vertices, like B_{1} and B_{2}, by defining an unsolvable configuration C^{*} of size 19 , as follows. Consider a pair of vertices u and v at distance 4 in such a graph G. Define $C^{*}(v)=15, C^{*}(x)=0$ for all $x \in\left(N_{2}[u] \cup N_{1}[v]\right)-\{v\}$, and $C^{*}(x)=1$ otherwise. Hence, $\left|C^{*}\right|=19$.

Please refer to Figure 3. Analogous arguments can be done for B_{1} and B_{2}, so we present with no loss of generality the arguments for B_{2}. We can establish the non trivial lower bound $21 \leq \pi\left(B_{2}\right)$, as an application of the Retract Lemma 2, since a portion of B_{2} has a C_{9} retract and $\pi\left(C_{9}\right)=21$. We can actually define a x_{3}-unsolvable configuration of size 22, by organizing B_{2} by distance from target x_{3}. Consider the C_{9} induced by $x_{3}, x_{1}, z_{1}, z_{2}, z_{2}^{\prime}, x_{2}^{\prime}, x_{5}^{\prime}, x_{3}^{\prime}, z_{3}$. Adjacent vertices z_{2}^{\prime} and x_{2}^{\prime} are at distance 4 from target x_{3}. Place 10 pebbles on z_{2}^{\prime} and 10 pebbles on x_{2}^{\prime} to get a x_{3}-unsolvable configuration of size 20 . Additionally, place 1 pebble on z_{5}^{\prime} and 1 pebble on x_{1}^{\prime}, to get the desired x_{3}-unsolvable configuration of size 22 , since z_{5}^{\prime} and x_{1}^{\prime} are among the vertices at distance 3 from target x_{3}, that are not in a cycle C_{9} together with x_{3}, z_{2}^{\prime} and x_{2}^{\prime}. Hence $23 \leq \pi\left(B_{2}\right)$.

Now we prove the upper bound $\pi\left(B_{2}\right) \leq 34$, using WFL. Note that we have six different roots, by considering: $z_{1}=z_{1}^{\prime}, z_{2}=z_{2}^{\prime}=z_{5}=z_{5}^{\prime}, x_{1}=x_{1}^{\prime}$, $x_{2}=x_{2}^{\prime}=x_{5}=x_{5}^{\prime}, x_{3}=x_{3}^{\prime}=x_{4}=x_{4}^{\prime}$, and $z_{3}=z_{4}$. We shall define strategies with root x_{3}, since this root gave us the largest upper bound. We refer to the Appendix for the strategies with the other five roots that give values not larger than the ones given by strategies presented for root x_{3}.

For B_{2}, we define three x_{3}-strategies $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$, and \boldsymbol{T}_{3} by

- $\boldsymbol{T}_{1}\left(x_{1}, z_{1}, x_{4}, z_{2}, z_{4}, z_{2}^{\prime}, x_{4}^{\prime}, x_{2}^{\prime}\right)=(32,16,16,8,8,4,4,2)$,
- $\boldsymbol{T}_{2}\left(x_{5}, x_{2}, z_{5}, z_{5}^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}, x_{2}^{\prime}\right)=(32,7,16,8,4,2,1)$ and
- $\boldsymbol{T}_{3}\left(z_{3}, x_{3}^{\prime}, x_{1}^{\prime}, x_{5}^{\prime}, z_{1}^{\prime}, x_{2}^{\prime}, x_{4}^{\prime}\right)=(32,16,8,8,4,4,3)$,
giving rise to the inequality $|C| \leq \frac{1}{7}\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right) \leq 236 / 7$ whenever C is x_{3}-unsolvable. Hence $\pi\left(B_{2}, x_{3}\right) \leq 34$. Using the strategies presented in the Appendix for the other five targets, we may conclude that $\pi\left(B_{2}\right) \leq 34$.

3.4. Proof of Theorem 4

We first observe an isomorphism between the traditional drawing of W shown in Figure 4 and the drawing of W in Figure 5 that partitions its vertices by distance from a_{1} (those of distance i are in V_{i}). Indeed, one can check that, in both drawings, W contains the 25 -cycle $a_{1}, a_{2}, \ldots, a_{25}, a_{1}$ (shown with blue edges in Figure 4 and circular vertex shapes in Figure 5), five vertex-disjoint 5 -cycles on the vertices b_{1}, \ldots, b_{25} (shown with green edges in Figure 4 and square vertex shapes in Figure 5), and the perfect matching using the 25 pairs $\left\{a_{i}, b_{i}\right\}$ (shown with red edges in Figure 4). The point of showing Figure 4 is to recognize W and its symmetries; the point of showing Figure 5 is to make lower bound arguments about $\pi(W)$.

Next we prove the lower bound by displaying an a_{1}-unsolvable configuration of size 182; such a configuration C is shown in Figure 5, with each vertex of V_{7}

Figure 3: Blanuša 2 and its labelling.
having 85 pebbles and 12 other vertices (7 orange, 3 blue, and 2 green) having one pebble each. The argument we give will make use of the vertex colors in Figure 5.

For two vertices u and v, we call a $u v$-path of minimal length a uv-geodesic. Define V_{B} (resp. V_{G}) to be the set of vertices in the union of all $a_{13} a_{1}$-geodesics (resp. $a_{14} a_{1}$-geodesics); these are shown in Figure 5 with blue (resp. green) shapes, except for the target vertex a_{1} in red. Note that the path P_{8} is a retract of the subgraph of W induced by V_{B} (resp. V_{G}), and so the graph $W_{B G}$ induced by $V_{B} \cup V_{G}$ has the cycle C_{15} as a retract. Hence $\pi\left(W_{B G}\right) \geq \pi\left(C_{15}\right)=171$. In particular, by Lemma 2, the configuration $C_{B G}$ - the restriction of the configuration C shown in Figure 5 to $V_{B} \cup V_{G}$ - is a_{1}-unsolvable in $W_{B G}$.

Suppose that $C_{B G}$ has a minimal a_{1}-solution σ in W. If σ uses the edge $e_{2}=a_{2} a_{1}$ then it does not use either of the edges $b_{1} a_{1}$ or $a_{25} a_{1}$; hence σ is an a_{1}-solution in the subgraph $W_{2}=W-e_{2}$. However the distance from a_{14} to a_{2} is 7 , and so the a_{1}-weight of $C_{B G}$ equals $85(3) / 2^{8}=255 / 256<1$, a contradiction. Similarly, if σ uses the edge $e_{1}=b_{1} a_{1}$ then we obtain the same a_{1}-weight calculation, while if σ uses the edge $e_{25}=a_{25} a_{1}$ then we obtain a smaller a_{1}-weight calculation; in both cases we have a contradiction. Hence $C_{B G}$ is not a_{1}-solvable in W. (This already invalidates the claim of [16] that $\pi(W)=166$.) Therefore, if C is a_{1}-solvable in W, then any solution must use some of the pebbles in the configuration $S=C-C_{B G}$ of singletons of C.

Now let σ be any minimal a_{1}-solution and let S_{σ} denote the set of singletons of S used by σ. We may rearrange the order of pebbling moves so that those moves involving S_{σ} are performed as early as possible. Now let C_{σ} denote the configuration that results from halting future pebbling moves of σ once the moves involving S_{σ} have been performed. Additionally, denote by C_{σ}^{\prime} the configuration $C_{\sigma}-\left(S-S_{\sigma}\right)$; that is, from C_{σ}, throw away the singletons of S that were not used by σ. Obviously C_{σ}^{\prime} is a_{1}-solvable. We argue that this is impossible by showing that the a_{1}-weight of C_{σ}^{\prime} is less than 1.

A $u v$-slide is a path $u a_{1} \cdots a_{k} v$ in which u is big and each a_{i} is nonempty,

Figure 4: The Watkins graph, shown in its traditional drawing.

Figure 5: The Watkins graph, organized by distance from target a_{1}, along with an a_{1} unsolvable configuration C of size 182.

Snark	$n(G)$	$D(G)$	$\pi(G)$
Petersen	10	2	10
Flower J_{3}	12	3	$12 \leq \pi\left(J_{3}\right) \leq 13$
Flower J_{5}	20	4	$23 \leq \pi\left(J_{5}\right) \leq 30$
Flower J_{7}	28	5	$41 \leq \pi\left(J_{7}\right) \leq 61$
Flower $J_{m}(m=2 k+1 \geq 7)$	$4 m$	$k+2$	$2^{k+2}+9 \leq \pi\left(J_{m}\right) \leq\left\lfloor 2^{k+2} 9 / 5+2 k-18 / 5\right\rfloor+1$
Blanuša (1 and 2)	18	4	$23 \leq \pi(G) \leq 34$
Loupekine (1 and 2)	22	4	$24 \leq \pi(G) \leq 271$
Double-Star	30	4	$32 \leq \pi(G) \leq 391$
Szekeres	50	7	$128 \leq \pi(G) \leq 5462$
Watkins	50	7	$183 \leq \pi(G) \leq 5462$

Table 1: Bounds on the pebbling numbers of several well known snarks.
the use of which allows for a pebble to move from u to v along the slide. A potential slide ignores the requirement that u is big; it is "potential" because it becomes a slide if u becomes big. Notice that every singleton vertex is part of a potential slide. Because the a_{1}-weight of $C_{B G}$ in W equals $1-2^{-8}, C_{\sigma}^{\prime}$ can only be a_{1}-solvable if we are able to increase the a_{1}-weight of $C_{B G}$ by at least 2^{-8} by using the slides of S. In other words, it must be that the a_{1}-weight of a pebble in C_{σ}^{\prime} must be greater than the sum of the a_{1}-weight of the pebbles of $C_{B G}$ that were used to create it. We show that this cannot happen.

Partition $S=S_{6} \cup S_{B} \cup S_{G}$, where $S_{6}=S \cap V_{6}$ (the orange pebbles in Figure 5), $S_{B}=S \cap V_{B}$ (the blue pebbles in Figure 5), and $S_{G}=S \cap V_{G}$ (the green pebbles in Figure 5). Using a slide in S_{6} requires two pebbles from $V_{5} \cup V_{6}$ and places one pebble in either $V_{5} \cup V_{6}$. Such a pebble has the same or lesser a_{1}-weight than the total a_{1}-weight of the original two pebbles. Using a slide in S_{B} requires two pebbles from $V_{3} \cup V_{4}$ and places one pebble in $V_{3} \cup V_{4}$; this also cannot increase the a_{1}-weight. Using a slide in S_{G}, however, can increase the a_{1}-weight only if the two pebbles originate from b_{21} and the resulting pebble lands on b_{20}. Still, the resulting pebble must be used in σ to achieve this a_{1-} weight increase (of $1 / 2^{3}-2 / 2^{5}=1 / 2^{4}$), although to do so requires at least 2^{6} pebbles from V_{7}, resulting in a a_{1}-weight loss of $2^{7} / 2^{7}-1 / 2^{3}>1 / 2^{4}$. Hence it is impossible to increase the a_{1}-weight of C_{σ}^{\prime} via pebbling steps, and so C_{σ}^{\prime}, and thus C, is a_{1}-unsolvable.

4. Final remarks

The previous work of [13] on Flower snarks and of [16] on the Watkins snark are at the foundation of our findings, since after reading their published papers, we have realised we were able to contribute to the subject. We hope the developed techniques and results will motivate more researchers to achieve better bounds on the pebbling numbers of snarks. Table 1 shows the state of art of the pebbling numbers of several well known snarks, using the basic bounds mentioned in the introduction, as well as Lemma 1, and Theorems 1, 2, 3 and 4.

Acknowledgements

This research was partially supported by CAPES Finance Code 001, FAPERJ (grant no. E-26/202.793/2017, E-26/010.002239/201, E-26/010.002674/2019, E-26/201.360/2021), and CNPq (grant no. 407635/2018-1, 305356/2021-6, 313 $797 / 2020-0)$. The third author is grateful to the Federal University of Rio de Janeiro for partial support of his visit, and to his coauthors for their tremendous hospitality during his visit.

References

[1] L. Alcón, M. Gutierrez, and G. Hurlbert. Pebbling in split graphs. SIAM J. Discrete Math., 28:1449-1466, 2014.
[2] C. Campos, S. Dantas, and C. de Mello. The total-chromatic number of some families of snarks. Discrete Math., 311(12):984-988, 2011.
[3] A. Cavicchioli, M. Meschiari, B. Ruini, and F. Spaggiari. A survey on snarks and new results: Products, reducibility and a computer search. J. Graph Theory, 28(2):57-86, 1998.
[4] M. Chan and A. P. Godbole. Improved pebbling bounds. Discrete Math., 308(11):2301-2306, 2008.
[5] F. Chung. Pebbling in hypercubes. SIAM J. Disc. Math., 2:467-472, 1989.
[6] D. W. Cranston, L. Postle, C. Xue, and C. Yerger. Modified linear programming and class 0 bounds for graph pebbling. J. Comb. Optim., 34(1):114132, 2017.
[7] G. Hurlbert. A survey of graph pebbling. Congr. Numer., 139:41-64, 1999.
[8] G. Hurlbert. General graph pebbling. Discrete Appl. Math., 161(9):12211231, 2013.
[9] G. Hurlbert. The weight function lemma for graph pebbling. J. Combin. Opt., 34(2):343-361, 2017.
[10] G. Hurlbert and F. Kenter. Graph pebbling: A blend of graph theory, number theory, and optimization. Notices Amer. Math. Soc., 68(11):19001913, 2021.
[11] G. Hurlbert and H. Kierstead. Graph pebbling complexity and fractional pebbling. (Unpublished), 2005.
[12] K. Milans and B. Clark. The complexity of graph pebbling. SIAM J. Discrete Math., 20(3):769-798, 2006.
[13] M. C. Monica and A. S. Suganya. Pebbling in flower snark graph. Global J. Pure Appl. Math., 13(6):1835-1843, 2017.
[14] J. Petersen. Sur le théorème de Tait. Interméd. Math., 15:225-227, 1898.
[15] M. Preissmann. Snarks of order 18. Discrete Mathematics, 42(1):125-126, 1982.
[16] S. Sreedevi and M. S. Anilkumar. Pebbling in Watkins snark graph. Internat. J. Res. Advent Tech., 7(2), 2019.
[17] P. G. Tait. Remarks on the colourings of maps. Proceedings of the Royal Society of Edinburgh, 10:729, 1880.
[18] J. J. Watkins. Snarks. Ann. New York Acad. Sci., 576:606-622, 1989.

Appendix

Missing cases for the proof of Theorem 2
Regarding the upper bounds of Theorem 2, for the two other possible roots v_{0} and x_{0}, we have obtained below strategies that give values not larger than the ones given by strategies presented for root z_{0}.

For J_{3}, we define three v_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

- $\boldsymbol{T}_{0}\left(z_{0}, x_{0}, y_{0}, x_{1}, y_{1}, x_{-1}, y_{-1}, z_{1}, z_{-1}\right)=(8,4,4,2,2,2,2,1,1)$,
- $\boldsymbol{T}_{1}\left(v_{1}, z_{1}, x_{1}, y_{1}, x_{0}, x_{-1}, y_{-1}\right)=(8,4,2,2,1,1,1)$ and
- $\boldsymbol{T}_{-1}\left(v_{-1}, z_{-1}, x_{-1}, y_{-1}, y_{0}, x_{1}, y_{1}\right)=(8,4,2,2,1,1,1)$,
giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 64 / 5$ whenever C is v_{0}-unsolvable. Hence $\pi\left(J_{3}, v_{0}\right) \leq 13$.

And we define three x_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

- $\boldsymbol{T}_{0}\left(z_{0}, v_{0}, y_{0}, v_{-1}, v_{1}, y_{-1}, y_{1}\right)=(8,4,4,2,2,1,1)$,
- $\boldsymbol{T}_{1}\left(x_{1}, z_{1}, y_{-1}, v_{1}, z_{-1}, y_{0}, v_{-1}, v_{0}\right)=(8,4,4,2,1,1,1,1)$ and
- $\boldsymbol{T}_{-1}\left(x_{-1}, z_{-1}, y_{1}, v_{-1}, z_{1}, v_{1}\right)=(8,4,4,2,1,1)$,
giving rise again to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 64 / 5$ whenever C is x_{0}-unsolvable. Hence $\pi\left(J_{3}, x_{0}\right) \leq 13$. We may conclude that $\pi\left(J_{3}\right) \leq 13$.

For J_{5}, we define three v_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

- $\boldsymbol{T}_{0}\left(z_{0}, x_{0}, y_{0}, x_{1}, y_{1}, x_{-1}, y_{-1}, x_{2}, y_{2}, x_{-2}, y_{-2}, z_{2}, z_{-2}\right)$
$=(16,8,8,4,4,4,4,2,2,1,1,1,1)$,
- $\boldsymbol{T}_{1}\left(v_{1}, v_{2}, z_{1}, z_{2}, x_{2}, y_{2}, x_{1}, y_{-2}, x_{-2}, y_{1}\right)=(16,8,8,4,2,2,1,1,1,1)$
and
- $\boldsymbol{T}_{-1}\left(v_{-1}, v_{-2}, z_{-1}, z_{-2}, x_{-2}, y_{-2}, x_{-1}, y_{2}, x_{2}, y_{-1}\right)=$ (16, $8,8,4,2,2,1,1,1,1)$,
giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 146 / 5$ whenever C is v_{0}-unsolvable. Hence $\pi\left(J_{5}, v_{0}\right) \leq 30$.

And we define three x_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

- $\boldsymbol{T}_{0}\left(z_{0}, v_{0}, y_{0}, v_{-1}, v_{1}, y_{-1}, y_{1}, v_{2}, v_{-2}, y_{2}, y_{-2}, z_{2}\right)$
$=(16,8,8,4,4,4,4,2,2,1,1,1)$,
- $\boldsymbol{T}_{1}\left(x_{1}, z_{1}, x_{2}, y_{-2}, z_{2}, y_{-1}, z_{-2}, y_{2}, v_{2}, v_{1}, v_{-2}\right)$
$=(16,8,8,4,4,1,1,1,2,1,1)$ and
- $\boldsymbol{T}_{-1}\left(x_{-1}, z_{-1}, x_{-2}, z_{-2}, y_{2}, v_{-2}, y_{1}, v_{2}, v_{-1}\right)=(16,8,8,4,4,2,1,1,1)$,
giving rise again to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 146 / 5$ whenever C is x_{0}-unsolvable. Hence $\pi\left(J_{5}, x_{0}\right) \leq 30$. We may conclude that $\pi\left(J_{5}\right) \leq 30$.

For J_{7}, we define three v_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

$$
\begin{aligned}
& \bullet \boldsymbol{T}_{0}\left(z_{0}, x_{0}, y_{0}, x_{1}, y_{1}, x_{-1}, y_{-1}, x_{2}, z_{1}, z_{-1}, x_{-2}, y_{2}, y_{-2}, x_{3}, x_{-3}, y_{3}, y_{-3}, z_{3},\right. \\
& \left.z_{-3}\right)=(32,16,16,8,8,8,8,4,4,4,4,4,4,2,2,2,2,1,1) \\
& \text { - } \boldsymbol{T}_{1}\left(v_{1}, v_{2}, z_{1}, v_{3}, z_{2}, z_{3}, x_{2}, y_{2}, x_{3}, y_{3}, x_{-3}, y_{-3}\right) \\
& =(32,16,1,8,5,4,1,1,2,2,1,1) \text { and } \\
& \text { - } \boldsymbol{T}_{-1}\left(v_{-1}, v_{-2}, z_{-1}, v_{-3}, z_{-2}, z_{-3}, x_{-2}, y_{-2}, x_{-3}, y_{-3}, y_{3}, x_{3}\right) \\
& =(32,16,1,8,5,4,1,1,2,2,1,1) \text {, }
\end{aligned}
$$

giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 278 / 5<56$ whenever C is v_{0}-unsolvable. Hence $\pi\left(J_{7}, v_{0}\right) \leq 56$.

And we define three x_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

$$
\begin{aligned}
& \bullet \boldsymbol{T}_{0}\left(z_{0}, v_{0}, y_{0}, v_{1}, v_{-1}, y_{1}, y_{-1}, v_{2}, v_{-2}, y_{2}, y_{-2}, v_{3}, v_{-3}, y_{3}, y_{-3}, z_{3}\right) \\
& =(32,16,16,8,8,8,8,4,4,4,4,2,2,1,1,1) \\
& \bullet \boldsymbol{T}_{1}\left(x_{1}, z_{1}, x_{2}, z_{2}, x_{3}, v_{2}, y_{-3}, z_{3}, z_{-3}, y_{3}, v_{3}, v_{-3}\right) \\
& =(32,5,16,8,8,1,4,4,1,1,2,1) \text { and } \\
& \bullet \boldsymbol{T}_{-1}\left(x_{-1}, z_{-1}, x_{-2}, z_{-2}, x_{-3}, y_{-2}, v_{-2}, z_{-3}, y_{3}, v_{-3}, y_{2}, v_{3}\right) \\
& =(32,5,16,8,8,1,1,4,4,2,1,1) \text {, }
\end{aligned}
$$

giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1}\right) \leq 284 / 5<57$ whenever C is x_{0}-unsolvable. Hence $\pi\left(J_{7}, x_{0}\right) \leq 57$. We may conclude that $\pi\left(J_{7}\right) \leq 61$.

For J_{9}, we define three x_{0}-strategies $\boldsymbol{T}_{0}, \boldsymbol{T}_{1}$, and \boldsymbol{T}_{-1} by

$$
\begin{aligned}
& \bullet \boldsymbol{T}_{0}\left(z_{0}, v_{0}, y_{0}, v_{1}, v_{-1}, y_{1}, y_{-1}, v_{2}, v_{-2}, y_{2}, y_{-2}, v_{3}, v_{-3}, y_{3}, y_{-3}, v_{4}, v_{-4}, y_{4}\right. \text {, } \\
& \left.y_{-4}, z_{4}\right)=(64,32,32,16,16,16,16,8,8,8,8,4,4,4,4,2,2,2,1,1) \\
& \bullet \boldsymbol{T}_{1}\left(x_{1}, z_{1}, x_{2}, z_{2}, x_{3}, z_{3}, x_{4}, v_{3}, y_{-4}, z_{4}, z_{-4}, y_{4}, v_{4}, v_{-4}\right) \\
& =(64,5,32,16,16,5,8,1,2,4,1,1,2,1) \text { and } \\
& \bullet \boldsymbol{T}_{-1}\left(x_{-1}, z_{-1}, x_{-2}, z_{-2}, x_{-3}, v_{-2}, z_{-3}, x_{-4}, y_{-3}, v_{-3}, z_{-4}, y_{4}, v_{-4}, y_{3}, v_{4}\right) \\
& =(64,5,32,16,16,8,5,8,1,1,4,2,2,1,1) \text {. }
\end{aligned}
$$

For $m \geq 7$ (i.e. $k \geq 3$), using the same pattern we have defined above for the three v_{0}-strategies for J_{7}, we define three corresponding v_{0}-strategies giving rise to the inequality

$$
\begin{aligned}
5|C| & \leq \boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1} \\
& =3\left(2^{k+2}\right)+4\left(2^{k+1}\right)+6\left(2^{k}+\cdots+2^{3}\right)+5(2 k+8) \\
& \leq 3\left(2^{k+2}\right)+6\left(2^{3}+\cdots+2^{k+1}\right)+5(2 k+6)
\end{aligned}
$$

whenever C is v_{0}-unsolvable.

For $m \geq 9$ (i.e. $k \geq 4$), using the same pattern we have defined above for the three x_{0}-strategies for J_{9}, we define three corresponding x_{0}-strategies giving rise to the inequality

$$
\begin{aligned}
5|C| & \leq \boldsymbol{T}_{0}+\boldsymbol{T}_{1}+\boldsymbol{T}_{-1} \\
& =3\left(2^{k+2}\right)+4\left(2^{k+1}\right)+8\left(2^{k}\right)+6\left(2^{k-1}+\cdots+2^{3}\right)+5(2 k+6) \\
& \leq 3\left(2^{k+2}\right)+6\left(2^{3}+\cdots+2^{k+1}\right)+5(2 k+6),
\end{aligned}
$$

whenever C is x_{0}-unsolvable.
We may conclude that for $m \geq 3$ (i.e. $k \geq 1$), $\pi\left(J_{m}\right) \leq\left\lfloor 2^{k+2} 9 / 5+2 k-\right.$ $18 / 5\rfloor+1$.

Missing cases for the proof of Theorem 3
Regarding the upper bounds of Theorem 3, for the five other possible roots $z_{1}, x_{1}, z_{2}, x_{2}$, and z_{3}, we have obtained below strategies that give values not larger than the ones given by strategies presented for root x_{3}.

For B_{2}, we define three x_{1}-strategies $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$, and \boldsymbol{T}_{3} by

- $\boldsymbol{T}_{1}\left(x_{3}, z_{3}, x_{3}^{\prime}, x_{1}^{\prime}, x_{5}^{\prime}, z_{1}^{\prime}\right)=(32,16,16,8,8,4)$,
- $\boldsymbol{T}_{2}\left(z_{1}, z_{2}, z_{5}, x_{2}, x_{5}, z_{2}^{\prime}, z_{5}^{\prime}, x_{2}^{\prime}, x_{5}^{\prime}, z_{1}^{\prime}\right)=(16,8,8,4,4,4,4,2,2,2)$ and
- $\boldsymbol{T}_{3}\left(x_{4}, z_{4}, x_{4}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)=(32,16,8,8,4)$
giving rise to the inequality $|C| \leq \frac{1}{4}\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right) \leq 120 / 4$ whenever C is x_{1}-unsolvable. Hence $\pi\left(B_{2}, x_{1}\right) \leq 31$.

For B_{2}, we define three x_{2}-strategies $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$, and \boldsymbol{T}_{3} by

- $\boldsymbol{T}_{1}\left(x_{4}, z_{4}, x_{4}^{\prime}, x_{1}^{\prime}, x_{3}^{\prime}\right)=(16,8,4,2,1)$,
- $\boldsymbol{T}_{2}\left(z_{2}, z_{1}, z_{2}^{\prime}, x_{1}, x_{2}^{\prime}, z_{1}^{\prime}, x_{1}^{\prime}, x_{5}^{\prime}, x_{3}^{\prime}\right)=(16,8,8,4,4,4,2,2,1)$ and
- $\boldsymbol{T}_{3}\left(x_{5}, x_{3}, z_{5}, z_{3}, z_{5}^{\prime}, x_{3}^{\prime}, x_{5}^{\prime}\right)=(16,8,4,4,2,2)$
giving rise to the inequality $|C| \leq \frac{1}{4}\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right) \leq 124 / 4$ whenever C is x_{2}-unsolvable. Hence $\pi\left(B_{2}, x_{2}\right) \leq 32$.

For B_{2}, we define three z_{1}-strategies $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$, and \boldsymbol{T}_{3} by

- $\boldsymbol{T}_{1}\left(x_{1}, x_{3}, x_{4}, z_{3}, z_{4}, x_{3}^{\prime}, x_{4}^{\prime}, x_{1}^{\prime}\right)=(16,8,8,4,4,2,2,1)$,
- $\boldsymbol{T}_{2}\left(z_{2}, x_{2}, z_{2}^{\prime}, x_{1}^{\prime}, z_{1}^{\prime}, x_{4}^{\prime}, x_{1}^{\prime}, x_{3}^{\prime}, z_{4}\right)=(16,5,8,4,4,2,2,2,1)$ and
- $\boldsymbol{T}_{3}\left(z_{5}, x_{5}, z_{5}^{\prime}, z_{1}^{\prime}, x_{5}^{\prime}, x_{1}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}, z_{3}\right)=(16,5,8,4,4,2,2,1,1)$
giving rise to the inequality $|C| \leq \frac{1}{5}\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right) \leq 133 / 5$ whenever C is z_{1}-unsolvable. Hence $\pi\left(B_{2}, z_{1}\right) \leq 27$.

For B_{2}, we define three z_{2}-strategies $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$, and \boldsymbol{T}_{3} by

- $\boldsymbol{T}_{1}\left(z_{2}^{\prime}, z_{1}^{\prime}, x_{2}^{\prime}, z_{5}^{\prime}, x_{1}^{\prime}, x_{4}^{\prime}, x_{5}^{\prime}, x_{3}^{\prime}\right)=(16,8,8,4,4,4,4,2)$,
- $\boldsymbol{T}_{2}\left(z_{1}, z_{5}, x_{1}, x_{3}, z_{3}, x_{3}^{\prime}\right)=(16,4,8,4,2,1)$ and
- $\boldsymbol{T}_{3}\left(x_{2}, x_{5}, x_{4}, z_{4}, z_{3}, x_{3}^{\prime}\right)=(16,4,8,4,2,1)$
giving rise to the inequality $|C| \leq \frac{1}{4}\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right) \leq 120 / 4$ whenever C is z_{2}-unsolvable. Hence $\pi\left(B_{2}, z_{2}\right) \leq 31$.

For B_{2}, we define three z_{3}-strategies $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$, and \boldsymbol{T}_{3} by

- $\boldsymbol{T}_{1}\left(z_{4}, x_{4}, x_{4}^{\prime}, x_{2}, x_{2}^{\prime}, z_{2}, z_{2}^{\prime}\right)=(32,16,16,8,8,4,4)$,
- $\boldsymbol{T}_{2}\left(x_{3}^{\prime}, x_{1}^{\prime}, x_{5}^{\prime}, z_{1}^{\prime}, z_{5}^{\prime}, z_{2}^{\prime}\right)=(32,16,16,8,8,4)$ and
- $\boldsymbol{T}_{3}\left(x_{3}, x_{1}, x_{5}, z_{1}, z_{5}, z_{2}\right)=(32,16,16,8,8,4)$
giving rise to the inequality $|C| \leq \frac{1}{8}\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}+\boldsymbol{T}_{3}\right) \leq 133 / 5$ whenever C is z_{3}-unsolvable. Hence $\pi\left(B_{2}, z_{3}\right) \leq 33$.

[^0]: *Partially supported by CNPq, FAPERJ and CAPES.
 Email addresses: adauto@cos.ufrj.br (Matheus Adauto), celina@cos.ufrj.br (Celina de Figueiredo), ghurlbert@vcu.edu (Glenn Hurlbert), diana.sasaki@ime.uerj.br (Diana Sasaki)

