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ON THE COMPUTATIONAL DIFFICULTY OF THE TERMINAL

CONNECTION PROBLEM∗

Alexsander A. de Melo1 ,**, Celina M.H. de Figueiredo1

and Uéverton S. Souza2

Abstract. A connection tree of a graph G for a terminal set W is a tree subgraph T of G such that
leaves(T ) ⊆ W ⊆ V (T ). A non-terminal vertex is called linker if its degree in T is exactly 2, and it is
called router if its degree in T is at least 3. The Terminal connection problem (TCP) asks whether
G admits a connection tree for W with at most ` linkers and at most r routers, while the Steiner
tree problem asks whether G admits a connection tree for W with at most k non-terminal vertices.
We prove that, if r ≥ 1 is fixed, then TCP is polynomial-time solvable when restricted to split graphs.
This result separates the complexity of TCP from the complexity of Steiner tree, which is known to
be NP-complete on split graphs. Additionally, we prove that TCP is NP-complete on strongly chordal
graphs, even if r ≥ 0 is fixed, whereas Steiner tree is known to be polynomial-time solvable. We also
prove that, when parameterized by clique-width, TCP is W[1]-hard, whereas Steiner tree is known
to be in FPT. On the other hand, agreeing with the complexity of Steiner tree, we prove that TCP
is linear-time solvable when restricted to cographs (i.e. graphs of clique-width 2). Finally, we prove
that, even if either ` ≥ 0 or r ≥ 0 is fixed, TCP remains NP-complete on graphs of maximum degree 3.
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1. Introduction

Steiner tree is one of the most fundamental network design problems, proved to be NP-complete by Karp
in his seminal paper [20]. Besides being related to several real-world applications, Steiner tree is of great
theoretical interest, and it has been extensively studied from the perspective of graph theory [4, 9, 16, 29, 33]
and computational complexity [2, 8, 12, 30]. The Steiner tree problem has as input a connected graph G, a
non-empty terminal set W ⊆ V (G), and a non-negative integer k, and it asks whether there exists a connected
subgraph T of G such that W ⊆ V (T ) and |V (T ) \W | ≤ k. Such a connected subgraph T admits a spanning
tree with at most k non-terminal vertices. In this paper, we analyse the computational complexity of a network
design problem closely related to Steiner tree, called Terminal connection.
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Let G be a graph and W ⊆ V (G) be a non-empty set. A connection tree T of G for W is a tree subgraph of
G such that leaves(T ) ⊆ W ⊆ V (T ), where leaves(T ) denotes the leaf set of T . In a connection tree T for W ,
the vertices belonging W are called terminal, and the vertices belonging to V (T ) \W are called non-terminal
and are classified into two types according to their respective degrees in T , namely: the non-terminal vertices of
degree exactly 2 in T are called linkers and the non-terminal vertices of degree at least 3 in T are called routers
cf. [11]. We remark that the vertex set of every connection tree can be partitioned into terminal vertices, linkers
and routers. For each connection tree T , we let L(T ) denote the linker set of T and R(T ) denote the router set
of T . Next, we present a formal definition for the Terminal connection problem.

Input: A connected graph G, a non-empty terminal set W ⊆ V (G) and two non-negative
integers ` and r.

Question: Does there exist a connection tree T of G for W such that |L(T )| ≤ ` and |R(T )| ≤ r?

Terminal Connection (TCP)

TCP was introduced by Dourado et al. [11], having as motivation applications in information security and
network routing, and it was proved to be polynomial-time solvable when the parameters ` and r are both
fixed [11]. Nevertheless, it was proved to be NP-complete even if either ` ≥ 0 or r ≥ 0 is fixed [11]. In particular,
the problem was proved to be NP-complete even if ` ≥ 0 is fixed and the input graph has constant maximum
degree [10].

There is a straightforward Turing reduction from Steiner tree to TCP, namely: (G,W, k) is a yes-instance
of Steiner tree if and only if (G,W, `, r) is a yes-instance of TCP for some pair `, r ∈ {0, . . . , k} such that
` + r = k. An interesting aspect of this Turing reduction is the fact that it preserves the structure of the
input graph. Consequently, if TCP is polynomial-time solvable on some graph class G, then so is Steiner
tree. Analogously, if Steiner tree is NP-complete on some graph class G, then TCP cannot be solved in
polynomial-time on G, unless P=NP. Nevertheless, if either ` ≥ 0 or r ≥ 0 is fixed, then possibly TCP is
polynomial-time solvable on a graph class G, while Steiner tree remains NP-complete on G. In addition,
there might exist a graph class G on which Steiner tree is polynomial-time solvable whereas TCP remains
NP-complete.

In this work, we confirm the existence of such complexity separating classes. In Section 2, we prove that,
on split graphs, TCP is polynomial-time solvable if r ≥ 1 is fixed, whereas Steiner tree is known to be NP-
complete [33]. Besides, we prove that, on strongly chordal graphs, TCP remains NP-complete even if r ≥ 0 is
fixed, whereas Steiner tree is known to be polynomial-time solvable [33]. Also, we prove in Section 3.1 that,
parameterized by clique-width, TCP is W[1]-hard, whereas Steiner tree is known to be in FPT [1].

On the other hand, in Section 3.2, we prove that TCP can be solved in linear-time on cographs (i.e. graphs of
clique-width 2), agreeing with the computational complexity of Steiner tree [4]. Additionally, in Section 4,
we prove that TCP remains NP-complete on graphs of maximum degree 3 even if either ` ≥ 0 or r ≥ 0 is fixed.
It is worth mentioning that, although Steiner tree is known to be NP-complete on graphs of maximum degree
3 [22], our NP-completeness results of TCP with either ` ≥ 0 or r ≥ 0 fixed do not immediately follow from the
NP-completeness of Steiner tree.

Table 1 summarises the mentioned results.

1.1. Related works

Motivated by applications in optical networks and bandwidth consumption minimization, another variant of
Steiner tree that has been investigated is the one in which the number of branching nodes in the sought tree
T , i.e. vertices (which not necessarily are non-terminal) of degree at least 3 in T , is bounded. In [17, 31, 32], the
authors addressed the undirected and directed cases of this variant, for which they devised approximation and
parameterized tractable algorithms, apart from obtaining some intractability results.

In addition, Dourado et al. introduced in [10] the strict variant of TCP, called Strict terminal connection
problem (S-TCP), which has the same input of TCP but further requires that the sought connection tree T
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Table 1. Comparison between the computational complexity of TCP with the computational
complexity of Steiner tree.

Problem

Graph class/Parameter TCP TCP fixed ` TCP fixed r Steiner tree

Split
NP-c

Thm. 2.2
NP-c

Thm. 2.2
Poly, for r ≥ 1

Thm. 2.1
NP-c [33]

Strongly chordal
NP-c

Thm. 2.6
Open

NP-c
Thm. 2.6

Poly [33]

Clique-width
W[1]-h

Thm. 3.1
Open

W[1]-h
Thm. 3.1

FPT [1]

Cographs
Poly

Thm. 3.9
Poly

Thm. 3.9
Poly

Thm. 3.9
Poly [4]

Maximum degree 3
NP-c

Thms. 4.1 and 4.3
NP-c

Thm. 4.1
NP-c

Thm. 4.3
NP-c [22]

satisfies leaves(T ) = W ⊆ V (T ). It is worth mentioning that, just as TCP can be seen as a generalization of
Steiner tree, S-TCP can be seen as a generalization of Full Steiner tree, which is a widely studied
variant of Steiner tree [18, 21, 23]. Similarly to TCP, it was proved that S-TCP is polynomial-time solvable
when the parameters ` ≥ 0 and r ≥ 0 are both fixed [10], and that the problem is still NP-complete if ` ≥ 0 is
fixed [10]. Nevertheless, except for the case r ∈ {0, 1}, which was shown to be polynomial-time solvable [24], the
complexity of S-TCP for fixed r ≥ 2 has remained open. Motivated by this question, S-TCP was also investigated
in [25, 27]. In particular, in [25], S-TCP was proved to be NP-complete (and W[2]-hard when parameterized
by r), even if ` ≥ 0 is constant and the input graph is restricted to split graphs. An interesting fact of this proof
is that it can be easily adapted to TCP. Consequently, we obtain that TCP is also NP-complete (and W[2]-hard
when parameterized by r) on split graphs even if ` ≥ 0 is constant. Besides this result, it was analysed in [25]
the complexity of S-TCP when restricted to graphs of bounded maximum degree, and it was also proved that
S-TCP is polynomial-time solvable on cographs.

A previous version of this work appeared as an extended abstract at SOFSEM 2021 conference [26]. Besides
the full proofs omitted in [26], the present paper contains further contributions, such as the tractability of TCP
on split graphs and the W[1]-hardness of TCP parameterized by clique-width.

1.2. Graph notation

Now, we present some basic notation and terminologies of graph theory that are used throughout this paper.
For any missing definition or terminology, we refer to [3].

In this work, all graphs are finite, simple and undirected. Let G be a graph. We let V (G) and E(G) denote
the vertex set and the edge set of G, respectively. For every vertex u ∈ V (G), we let NG(u) and NG[u] =
NG(u) ∪ {u} denote the (open) neighbourhood and the closed neighbourhood of u in G, respectively; and we let
dG(u) = |NG(u)| denote the degree of u in G. Two distinct vertices u, v ∈ V (G) are said to be false twins (resp.
true twins) in G if in G if NG(u) = NG(v) (resp. NG[u] = NG[v]). The length of a path P is defined as the
number of edges of P . The distance between two vertices u, v ∈ V (G) is the length of a path of G between u
and v of minimum length. For every non-empty subset S ⊆ V (G), we let G[S] denote the subgraph of G induced
by S.

Let G1, . . . , Gk be k ≥ 2 graphs. The disjoint union of G1, . . . , Gk is the graph H, denoted by G1 ∪ · · · ∪Gk,
with vertex set V (H) = V (G1)] · · · ]V (Gk) and edge set E(H) = E(G1)] · · · ]E(Gk). The join of G1, . . . , Gk
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is the graph H, denoted by G1 ∧ · · · ∧Gk, with vertex set V (H) = V (G1 ∪ · · · ∪Gk) and edge set

E(H) = E(G1 ∪ · · · ∪Gk) ] {uv | u ∈ V (Gi), v ∈ V (Gj), i, j ∈ {1, . . . , k}, i 6= j}.

2. Separating classes: Split and strongly chordal

In this section, we present the main results of this work. First, we prove that, when restricted to split
graphs, TCP is polynomial-time solvable if r ≥ 1 is fixed. Second, we prove that, when restricted to strongly
chordal graphs, TCP is NP-complete even if r ≥ 0 is fixed. Such results separate the complexity of TCP from
the complexity of Steiner tree, since Steiner tree is known to be NP-complete on split graphs [33] and
polynomial-time solvable on strongly chordal graphs [33].

2.1. Split graphs

A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. In what follows,
we prove the following theorem.

Theorem 2.1. For r ≥ 1, TCP can solved in time nO(r) on split graphs.

To prove Theorem 2.1, we propose a polynomial-time reduction from TCP, with r ≥ 1, to its strict variant
S-TCP, in which the terminal vertices are further required to coincide with the leaf set of the sought tree. S-TCP
was shown to admit an nO(r)-time algorithm on split graphs [25]. In a nutshell, the algorithm presented in [25]
enumerates each possible candidate router set R ⊆ V (G) \W , with |R| ≤ r, and then decides through matching
techniques whether the input graph G admits a connection tree T for the terminal set W , such that |L(T )| ≤ `,
R(T ) = R and leaves(T ) = W . Thus, combining our polynomial-time reduction with this algorithm, we obtain
that TCP can be solved in time nO(r) on split graphs for r ≥ 1.

It is worth mentioning that this result is optimum, i.e. the nO(r)-time complexity cannot be consider-
ably improved. Indeed, the following theorem immediately comes from a trivial adaptation of a parameterized
polynomial-time reduction from the Set cover problem to S-TCP presented in [25] (see Theorem 7 of [25]).

Theorem 2.2 ([25]). For any computable functions f and h, TCP cannot be solved in time f(r) · nh(`), unless
FPT = W[2], and cannot be solved in time f(r) · no(r), unless ETH fails.

In what follows, we write G〈K,S〉 to refer a split graph G and explicitly denote that K ∪ S is a partition of
the vertex set of G into a clique K and a stable set S.

Lemma 2.3. Let G〈K,S〉 be a split graph and W ⊆ V (G). If |W | ≥ 3, W ∩K = ∅ and there exists a connection
tree T of G for W such that R(T ) = ∅, then there exists a connection tree T ′ of G for W such that L(T ′) ⊆ |L(T )|
and |R(T ′)| = 1.

Proof. Since |W | ≥ 3 and R(T ) = ∅, there exists a terminal vertex w ∈W whose degree in T is at least 2. Then,
let u and u′ be two distinct neighbours of w in T . Since W ∩K = ∅, u, u′ ∈ L(T ) ∩K. Let T ′ be the graph
obtained from T by removing the edge wu′ and adding the edge uu′. Clearly, T ′ is a connection tree of G for
W such that L(T ′) = L(T ) \ {u} and R(T ′) = R(T ) ∪ {u}.

Lemma 2.4. Let G〈K,S〉 be a split graph and W ⊆ V (G) be a non-empty set. Suppose that G admits a
connection tree T for W . There exists a connection tree T ′ of G for W , with L(T ′) ⊆ L(T ) and |R(T ′)| ≤ |R(T )|,
that simultaneously satisfies the following conditions:

1. L(T ′) ⊆ K and R(T ′) ⊆ K;
2. If R(T ) ∩K 6= ∅ or W ∩K 6= ∅, then every vertex in W ∩ S is a leaf of T ′.

Proof. (1) Suppose that (L(T ) ∪ R(T )) ∩ S 6= ∅. Then, there exists a vertex u ∈ V (T ) ∩K. Let T ′ be the graph
obtained from T as follows:
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Figure 1. Split graph G′〈K,S′〉 of the instance g(I) of S-TCP described in Construction 1,
obtained from a split graph G〈K,S〉 of an instance I of TCP, with K ∩W 6= ∅.

� Remove all vertices belonging to (L(T ) ∪ R(T )) ∩ S and their incident edges;
� For each u′ ∈ L(T ) ∩ S, add the edge vv′, where NT (u′) = {v, v′};
� For each u′ ∈ NT (R(T ) ∩ S), add the edge uu′.

Clearly, T ′ is a connection tree of G for W such that L(T ′) ⊆ K and R(T ′) ⊆ K. Moreover, note that L(T ′) ⊆
L(T ) \ S, R(T ′) = R(T ) if R(T ) ∩ S = ∅, and R(T ′) ⊆ (R(T ) ∪ {u}) \ S otherwise.

(2) Suppose that W ∩ S 6= ∅ and that there exists a vertex u ∈ (R(T ) ∪W ) ∩K. Note that, in this case,
every vertex w ∈W ∩ S has at least one neighbour, say α(w), in T . Then, let T ′ be the graph obtained from T
as follows:

� For each w ∈W ∩ S, remove all edges of T that are incident to w except for wα(w); additionally, for each
v ∈ NT (w), add the edge uv.

Clearly, T ′ is a connection tree of G for W such that every vertex in W ∩ S is a leaf of T ′. Furthermore, one
can verify that L(T ′) = L(T ) and R(T ′) = R(T ).

Next, we present our polynomial-time reduction to S-TCP.

Construction 1 (Reduction from TCP to S-TCP on split graphs). Let G〈K,S〉 be a split graph and I =
(G,W, `, r) be an instance of TCP. If W ∩K = ∅, then we define our reduction instance of S-TCP as simply
g(I) = I. Otherwise, let ρ ∈W ∩K and consider the graph G′ obtained from G as follows (see Fig. 1):

� Add all vertices and all edges of G;
� For each u ∈W ∩ S ∩NG(W ∩K) \NG(ρ), add the edge ρu;
� Add three new vertices w′1, w′2 and w′3, and make them adjacent to ρ.

Note that G′ is a split graph, and that K ∪ S′ is a partition of V (G′) into a clique and a stable set, where
S′ = S ∪ {w′1, w′2, w′3}. We then define our reduction instance of S-TCP as g(I) = (G′,W ′, `, r + 1), where
W ′ = (W \ {ρ}) ∪ {w′1, w′2, w′3}.

The following lemma concludes the proof of Theorem 2.1.

Lemma 2.5. Let G〈K,S〉 be a split graph and I = (G,W, `, r) be an instance of TCP such that |W | ≥ 3. Also,
let g(I) be the instance of S-TCP obtained from I, as described in Construction 1. If r ≥ 1 or W ∩K 6= ∅, then
I is a yes-instance of TCP if and only if g(I) is a yes-instance of S-TCP.

Proof. First, suppose that I is a yes-instance of TCP. Then, there exists a connection tree T of G for W such
that |L(T )| ≤ ` and |R(T )| ≤ r. By Lemma 2.3, we can assume that R(T ) 6= ∅ or W ∩K 6= ∅. Furthermore,
by Lemma 2.4, we can assume that every vertex in W ∩ S is a leaf of T . This implies W \ leaves(T ) ⊆ K. If
W ∩K = ∅, then leaves(T ) = W and, therefore, we immediately obtain that g(I) = I is a yes-instance of S-TCP.
Thus, suppose that W ∩K 6= ∅. Additionally, by Lemma 2.4, assume that L(T ) ⊆ K and R(T ) ⊆ K. Note that
every vertex in V (T ) ∩ S is a leaf of T . Since T is a tree and ρ ∈ V (T ), for each vertex w ∈W ∩K \ {ρ}, there
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exists a single path between ρ and w in T and a single vertex in this path, say α(w), that belongs to NT (w)∩K.
Thus, let T ′ be the graph obtained from T as follows:

� For each w ∈W ∩K \ {ρ} and each w′ ∈ NT (w) \ {α(w)}, remove the edge ww′ and add the edge ρw′;
� For each i ∈ {1, 2, 3}, add the vertex w′i and the edge ρw′i.

One can verify that T ′ is a connection tree of G′ for W ′, such that leaves(T ′) = W ′, L(T ′) = L(T ) and R(T ) =
R(T ′) ∪ {ρ}.

Conversely, suppose that g(I) is a yes-instance of S-TCP. If W ∩K = ∅, then g(I) = I and, therefore, I is a
yes-instance of TCP. Thus, suppose that W ∩K 6= ∅, and let T ′ be a connection tree of G′ for W ′, such that
leaves(T ′) = W ′, |L(T ′)| ≤ ` and |R(T ′)| ≤ r + 1. Since the only neighbour of the terminal vertices w′1, w′2 and
w′3 in G′ is the vertex ρ, we have that ρ necessarily belongs to T ′ and, besides that, is a router of T ′. Moreover,
by construction of G′, if a vertex w is a neighbour of ρ in T ′ but is not a neighbour of ρ in G, then w ∈W ∩ S
and there exists a vertex in W ∩K, say β(w), which is a neighbour of w in G. Then, let T be the graph obtained
from T ′ as follows:

� Remove the vertices w′1, w′2 and w′3 and their incident edges;
� For each w ∈ NT ′(ρ) \NG(ρ), remove the edge ρw and add the edge β(w)w.

One can verify that T is a connection tree of G for W , such that L(T ) = L(T ′) and R(T ) = R(T ′) \ {ρ}.

2.2. Strongly chordal graphs

A chord of a cycle C is an edge between any two non-consecutive vertices of C. A graph G is called chordal
if every cycle of G of length at least 4 has a chord. In other words, a graph G is chordal if every induced cycle
of G has length 3. An even cycle is a cycle of even length. A chord uv of an even cycle C is called an odd chord
if the distance between u and v in C is odd. A graph G is called strongly chordal if it is chordal and every even
cycle of G of length at least 6 has an odd chord.

A vertex u of a graph G is called a simple vertex if, for any two vertices v, v′ ∈ NG(u), NG[v] ⊆ NG[v′] or
NG[v′] ⊆ NG[v]. In other words, a vertex u of a graph G is simple if the collection {NG[v] | v ∈ NG(u)} can be
linearly ordered by set inclusion. Farber [13] proved that a graph G is strongly chordal if and only if there exists
a linear ordering (u1, . . . , un) of the vertices of G, called simple elimination ordering, such that ui is a simple
vertex of G[{ui, . . . , un}] for each i ∈ {1, . . . , n}.

We prove that TCP remains NP-complete on strongly chordal graphs:

Theorem 2.6. For each r ≥ 0, TCP remains NP-complete when restricted to strongly chordal graphs.

In order to prove Theorem 2.6, we provide a polynomial-time reduction from the Hamiltonian path problem,
which was shown to be NP-complete on strongly chordal graphs by Müller [28]. The Hamiltonian path problem
has as input a graph G and asks whether G admits a Hamiltonian path, i.e. a path that contains all vertices of
G.

The next lemma presents some important properties of the class of strongly chordal graphs, which are used
in our reduction.

Lemma 2.7. The class of strongly chordal graphs is closed under the following operations:

1. Adding true twin vertices;
2. For any pair of true twin vertices v and v′, adding a new vertex w and adding the edges vw and wv′.

Proof. Let G be a strongly chordal graph and (u1, . . . , un) be a simple elimination ordering of G. For each
i ∈ {1, . . . , n}, let Gi denote G[{ui, . . . , un}].
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(1) Let H be the graph obtained from G by adding a true twin v of ui, for some i ∈ {1, . . . , n}. We claim
that

(u1, . . . , ui, v, ui+1 . . . , un)

is a simple elimination ordering of H. First, we show that v is a simple vertex of Hv, where Hv denotes
H[{v, ui+1, . . . , un}]. Since ui and v are true twins in H, NHv

[x] = (NGi
[x] \ {ui})∪{v} and NHv

[y] = (NGi
[y] \

{ui}) ∪ {v} for every pair x, y ∈ NHv
(v). Moreover, since ui is a simple vertex of Gi, we have that NGi

[x] ⊆
NGi

[y] or NGi
[y] ⊆ NGi

[x] for every pair x, y ∈ NGi
(v). Finally, we remark that NHv

(v) = NGi
(ui). Then, let

x, y ∈ NHv (v) and assume without loss of generality that NGi [x] ⊆ NGi [y]. One can verify that

NHv [x] = (NGi [x] \ {ui}) ∪ {v} ⊆ (NGi [y] \ {ui}) ∪ {v} = NHv [y].

Therefore, v is indeed a simple vertex of Hv.
Now, let j ∈ {1, . . . , n}. We prove that vj is a simple vertex of Hj , where Hj denotes

H[{uj , . . . , ui, v, ui+1, . . . , un}] if j ≤ i, and H[{uj , . . . , un}] otherwise. Note that, if j ≥ i + 1, then uj is triv-
ially a simple vertex of Hj , since in this case Hj = Gj . Thus, assume that j ≤ i. One can verify that, for every
x ∈ V (Hj) \ {v},

NHj
[x] =

{
NGj [x] ∪ {v} if ui ∈ NG(x)

NGj [x] otherwise.

Let x, y ∈ NHj
(uj). We prove that NHj

[x] ⊆ NHj
[y] or NHj

[y] ⊆ NHj
[x], implying that uj is indeed a simple

vertex of Hj . First, suppose that y = v. Note that, if NGj
[x] ⊆ NGj

[ui], then

NHj
[x] = NGj

[x] ∪ {v} ⊆ NGj
[ui] ∪ {v} = NHj

[ui] = NHj
[v].

On the other hand, if NGj [ui] ⊆ NGj [x], then

NHj
[v] = NHj

[ui] = NGj
[ui] ∪ {v} ⊆ NGj

[x] ∪ {v} = NHj
[x].

Now, suppose that x 6= v and y 6= v. Assume without loss of generality that NGj
[x] ⊆ NGj

[y]. Note that, if
ui ∈ NGj

(x), then ui ∈ NGj
(y) and, thus,

NHj [x] = NGj [x] ∪ {v} ⊆ NGj [y] ∪ {v} = NHj [y].

On the other hand, if ui 6∈ NG(x), then

NHj
[x] = NGj

[x] ⊆ NGj
[y] ⊆ NHj

[y].

(2) Let H be the graph obtained from G by adding a new vertex w and adding the edges vw and v′w, where
v and v′ are true twins of G. Since NH(w) = {v, v′} and NH [v] = NH [v′], it is immediate that w is a simple
vertex of H[{w, u1, . . . , un}]. Moreover, for every i ∈ {1, . . . , n}, ui is a simple vertex of G[{ui, . . . , un}]. Thus,

(w, u1, . . . , ui, . . . , un)

is a simple elimination ordering of H, and therefore, H is strongly chordal.
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[th]

Figure 2. Gadget Hr for r ≥ 1, described in Construction 2.

Figure 3. A graph G and the graph G′ obtained from G (and r = 0) as described in
Construction 3.

Construction 2 (Gadget Hr and Terminal Set Wr). Let r be a positive integer. We define the gadget Hr as
the graph such that (see Fig. 2)

V (Hr) = {ρ1, . . . , ρr} ∪ {x11, x21} ∪ {xi | i ∈ {2, . . . , r}} and

E(Hr) = {ρiρi+1 | i ∈ {1, . . . , r − 1}} ∪ {x11ρ1, x21ρ1} ∪ {xiρi | i ∈ {2, . . . , r}}.

Moreover, we let Wr = {x11, x21} ∪ {x2, . . . , xr} be the terminal set of Hr.

Construction 3 (Reduction from Hamiltonian path to TCP). Let G be a graph, with vertex set V (G) =
{u1, . . . , un}, and r be a non-negative integer. We let G′ be the graph obtained from G and r as follows (see
Fig. 3):

� Add all vertices and all edges of G to G′;
� For each vertex ui ∈ V (G), add a true twin u′i of ui, in such a way that NG′ [u

′
i] = NG′ [ui];

� For each vertex ui ∈ V (G), add a new vertex wi and add the edges uiwi and u′iwi, where u′i denotes the
true twin of ui added in the last step;

� If r ≥ 1, create the gadget Hr and define the terminal set Wr as described in Construction 2, besides
adding the edge ρrw1; otherwise, if r = 0, define Wr = ∅.

We then define our reduction instance of TCP as g(G, r) = (G′,W, `, r), where W = {w1, . . . , wn} ∪Wr and
` = 2n− 2.

We remark that, the graph G′ described in Construction 3 is similar to the one constructed in [11] to prove
the NP-completeness of TCP on general graphs for fixed r ≥ 0. The main difference is the fact that, in the
graph constructed in [11], for each ui ∈ V (G), it is added a false twin, instead of a true twin, of ui. However,
this makes the original graph not be strongly chordal, even if the input graph is strongly chordal; for instance,
a cycle C3 of length 3 is strongly chordal, but the graph resulting from adding a false twin for each vertex of
C3 is not strongly chordal, since it contains an induced cycle of length 4. The next lemma, which states that,
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whenever the input graph is strongly chordal, our constructed graph is strongly chordal as well, immediately
follows from Lemma 2.7 and from the fact that the vertices of Hr are not contained in any cycle of G′.

Lemma 2.8. Let G be a graph and r be a non-negative integer. Also, let G′ be the graph of the instance g(G, r)
of TCP obtained from G and r, as described in Construction 3. If G is strongly chordal, then so is G′.

Lemma 2.9. Let G be a graph and r be a non-negative integer. Also, let g(G, r) be the instance of TCP obtained
from G and r, as described in Construction 3. Then, G admits a Hamiltonian path if and only if g(G, r) is a
yes-instance of TCP.

Proof. Assume that V (G) = {u1, . . . , un} and that g(G, r) = (G′,W, `, r). Additionally, for simplicity, consider
Wr = V (Hr) = E(Hr) = ∅ if r = 0.

First, suppose that there exists in G a Hamiltonian path (uj1 , . . . , ujn). Then, let T be the graph with vertex
set

V (T ) = V (Hr) ∪ V (P ) ∪ {wj1 , u′j1 , ujn , wjn} ∪ {uji , wji , u
′
ji | i ∈ {2, . . . , n− 1}}

and edge set

E(T ) = E(Hr) ∪ {ρrw1, w1u
′
1}

∪ {u′ji−1
uji , ujiwji , wjiu

′
ji | i ∈ {2, . . . , n− 1}} ∪ {u′jn−1

ujn , ujnwjn},

where u′ji denotes the true twin of uji added in the construction of G′. Note that T is a connection tree of
G′ for W with L(T ) = {u′j1 , ujn} ∪ {uj2 , u

′
j2
, . . . , ujn−1

, u′jn−1
} and R(T ) = {ρ1, . . . , ρr}. Therefore, g(G, r) is a

yes-instance of TCP.
Conversely, suppose that g(G, r) is a yes-instance of TCP. Let T be a connection tree of G′ for W such that

|L(T )| ≤ 2n− 2 and |R(T )| ≤ r. We remark that ρ1 is the only neighbour of the terminal vertices x11, x
2
1 ∈ Wr

and, for each i ∈ {2, . . . , r}, ρi is the only neighbour of the terminal vertex xi ∈Wr. As a result, T must contain
all the vertices ρ1, . . . , ρr. More specifically, such vertices must be routers of T . This implies that T ′ = T −Hr

cannot contain any router, and all non-terminal vertices of T ′ must be linkers. Hence, T ′ is a path, since, by
construction of G′, wi has degree at most 2 in T ′ for every i ∈ {1, . . . , n}. Then, let P ′ = (wj1 , . . . , wjn) be a
sequence of distinct vertices such that, for each i ∈ {1, . . . , n− 1}, the path in T ′ between wji and wji+1

does
not contain any other terminal vertex. Note that, since |L(T )| ≤ ` = 2n− 2, every path in T ′ between any two
consecutive vertices wji and wji+1

in P ′ must be of one of the forms: (wji , u
′
ji
, u′ji+1

, wji+1
), (wji , u

′
ji
, uji+1

, wji+1
),

(wji , uji , uji+1 , wji+1), or (wji , uji , u
′
ji+1

, wji+1). As a result, it follows from the construction of G′ that, for each
i ∈ {1, . . . , n− 1}, uji and uji+1 are adjacent in G. Therefore, (uj1 , . . . , ujn) is a Hamiltonian path of G.

3. Graphs of bounded clique-width

In this section, we prove that TCP parameterized by the clique-width of the input graph is W[1]-hard.
Similarly to the results presented in Section 2, this contrasts with the complexity Steiner tree, since Steiner
tree is known to be in FPTwhen parameterized by clique-width [1]. On the other hand, agreeing with the
complexity of Steiner tree, we prove that TCP is linear-time solvable on cographs, which are precisely the
graphs of clique-width 2.

The notion of clique-width was introduced by Courcelle et al. [7], and it is one of the most studied graph
parameters. Next, we present the definition of this notion cf. [14, 15].

Let k be a positive integer. A graph is called a k-graph if its vertices are labelled with integers in {1, . . . , k}.
An initial k-graph is a k-labelled graph on a single vertex. The clique-width of a graph G, denoted by cwd(G),
is the smallest positive integer k such that G can be constructed by repeated application of the following four
operations:
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1. introducing (denoted by int(u, i)): construction of an initial k-graph, whose single vertex u is labelled by
an integer i ∈ {1, . . . , k} and has not been introduced yet;

2. disjoint union (here, denoted by ⊕);
3. relabelling (denoted by reli,j): changing all labels i to j, for i, j ∈ {1, . . . , k};
4. join (denoted by ηi,j): connecting all vertices labelled by i with all vertices labelled by j, for i, j ∈
{1, . . . , k}, i 6= j.

A construction of a graph G using the operations (1)-(4) described above can be represented by an algebraic
term, called cwd-expression defining G, composed of int, ⊕, reli,j , and ηi,j cf. [14], where i and j are distinct
positive integers. Note that cwd-expressions define a tree language, where each expression can be represented
by a rooted tree T cf. [15], where each int(u, i) of the expression is associated with a leaf of T , and each vertex of
G is introduced exactly once. A k-expression is a cwd-expression that contains at most k distinct labels cf. [14].
Thus, one can verify that, a graph G has clique-width at most k if and only if there exists a k-expression defining
G.

3.1. Parameterization by clique-width

Now, we prove the following theorem.

Theorem 3.1. For each r ≥ 0, TCP parameterized by clique-width is W[1]-hard.

More specifically, we show that, if a graph G has clique-width at most k for some k ≥ 2, then the graph G′

obtained from G as described in Construction 3 has clique-width at most k+ 1. This, along with Lemma 2.9 and
the fact that Hamiltonian path is W[1]-hard parameterized by clique-width [15], implies the W[1]-hardness
of TCP.

The following lemma is a well-known fact, and it can be immediately verified by an inductive argument on
the number of vertices of the tree.

Lemma 3.2. Every tree has clique-width at most 3. Moreover, if T is a tree and u is a leaf of T , then there
exists a 3-expression defining a construction of T in which at the root all vertices but u have the same label.

Lemma 3.3. Let G be a graph. For each r ≥ 0, if cwd(G) = k for some k ≥ 2, then cwd(G′) ≤ k + 1, where
G′ denotes the graph obtained from G and r as described in Construction 3.

Proof. Assume that V (G) = {u1, . . . , un} and cwd(G) ≤ k. Then, let γG be a k-expression defining G. Also,
let H ′ be the subgraph of G′ induced by V (Hr) ∪ {w1}. Note that H ′ is a tree. Thus, by Lemma 3.2, there
exists a construction (3-expression) of a vertex-labelled copy of H ′ (for short γ′H) in which all vertices but w1

have the same label. Assume, without loss of generality, that w1 is labelled by 1 at the root of γH′ , and that
all the other vertices of γH′ are labelled by 2. In what follows, we show that we can obtain from γG and γH′ a
(k+ 1)-expression γG′ defining our constructed graph G′. We recall that each vertex ui ∈ V (G) has a true twin
u′i in G′, and that NG′−Hr

(wi) = {ui, u′i}. Consider b = k + 1. We define γG′ as the cwd-expression obtained
from γG as follows:

� Let int(u1, i) be the leaf term of u1 in γG, for i ∈ {2, . . . , k}. Replace the occurrence of int(u1, i) in γG
with

rel1,b
(
ηi,1

(
relb,i

(
ηi,b(int(u1, i), int(u

′
1, b))

)
, rel2,b(γH′)

))
.

For i = 1, it is similar (just replace the occurrences of 1 by 2 and vice versa).
� For each uj ∈ V (G) \ {u1}, if int(uj , i) is the leaf term of uj in γG, replace the occurrence of int(uj , i) with

ηi,b

(
relb,i

(
ηi,b(int(uj , i), int(u

′
j , b))

)
, int(wj , b)

)
.
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We recall that, besides being represented by leaves, each vertex is introduced exactly once in a expression
tree. Moreover, we note that the operations described above consists in local replacements in the corresponding
leaves of the expression tree associated to γG. Thus, one can verify that γG′ defines G′. In addition, it is
straightforward that γG′ is a (k + 1)-expression, whenever k ≥ 2. Therefore, cwd(G′) ≤ k + 1.

3.2. Cographs

A cograph is a graph that does not contain a path of length 3 as an induced subgraph. Alternatively, cographs
are characterized by the following recursive definition, given by Corneil et al. [5]:

� A graph on a single vertex is a cograph;
� If G1, . . . , Gk are cographs, then so is their disjoint union G1 ∪ · · · ∪Gk;
� If G is a cograph, then so is its complement G.

We note that, if G is a connected cograph on more than one vertex, then there exist k ≥ 2 cographs G1, . . . , Gk
such that G is their join G1 ∧ · · · ∧Gk. Moreover, it is straightforward that a graph is a cograph if and only if
its clique-width is exactly 2.

A key algorithmic property of cographs is the fact that, up to isomorphism, each cograph G can be uniquely
represented by a rooted tree TG, called cotree [5], which can be seen as a specialization of a 2-expression defining
G. The leaves of TG correspond to the vertices of G, and each internal node u of TG represents either the disjoint
union or the join operation of the respective cographs induced by the leaves of the subtrees of TG rooted at each
child of u. Another important property is that, given a graph G, recognising G as a cograph, as well as obtaining
its respective cotree (if any), can be performed in time linear in the number of vertices and the number of edges
of G [6].

Let I = (G,W, `, r) be an instance of TCP, where G is a cograph. Since TCP can be easily solved in linear-time
if |W | < 3 or G[W ] is connected, we assume throughout this section that |W | ≥ 3 and G[W ] is not connected.
Moreover, we assume that G is connected and, therefore, is the join of k ≥ 2 cographs G1, . . . , Gk.

Lemma 3.4. Let G be a cograph that is the join of k ≥ 2 cographs G1, . . . , Gk, and let W ⊆ V (G) be a terminal
set such that |W | ≥ 3 and G[W ] is not connected. There exists a unique i ∈ {1, . . . , k} such that V (Gi)∩W 6= ∅.
Moreover, G admits a connection tree for W that contains exactly one router and no linker.

Proof. For the sake of contradiction, suppose that, for some i, j ∈ {1, . . . , k} with i 6= j, V (Gi) ∩W 6= ∅ and
V (Gj) ∩W 6= ∅. Then, let u ∈ V (Gi) ∩W , v ∈ V (Gj) ∩W , and let T be the graph with vertex set V (T ) = W
and edge set E(T ) = {uw | w ∈ W \ V (Gi)} ∪ {vw | w ∈ V (Gi) ∩W}. Clearly, T is a connected subgraph of
G[W ]. Therefore, there exists a unique i ∈ {1, . . . , k} such that V (Gi)∩W 6= ∅. This implies that V (Gj)∩W = ∅
for some j ∈ {1, . . . , k} \ {i}. Then, let u′ ∈ V (Gj) and T ′ be the graph with vertex set V (T ′) = {u′} ∪W and
edge set E(T ′) = {u′w | w ∈ W}. One can verify that T ′ is a connection tree of G for W such that L(T ′) = ∅
and R(T ′) = {u′}.

Considering the input graph G as the join of k ≥ 2 cographs G1, . . . , Gk, it follows from Lemma 3.4 that
TCP can be trivially solved if r ≥ 1, or V (Gi) ∩W 6= ∅ and V (Gj) ∩W 6= ∅ for some i, j ∈ {1, . . . , k}, with
i 6= j. Thus, we dedicate the remainder of this section to resolve the case in which r = 0 and there exists a
unique i ∈ {1, . . . , k} such that V (Gi) ∩W 6= ∅.

Lemma 3.5. Let G be a cograph and W ⊆ V (G) be a non-empty terminal set. If T is a connection tree of G
for W such that R(T ) = ∅ and |L(T )| is minimum, then NT (u) ⊆W for each u ∈ L(T ).

Proof. For the sake of contradiction, suppose that NT (u) 6⊆ W for some linker u ∈ L(T ). Since R(T ) = ∅ and
leaves(T ) ⊆ W , u belongs to a path P of T between two terminal vertices w,w′ ∈ W , such that (V (P ) \
{w,w′}) ∩W = ∅. Thus, it follows from the assumption NT (u) 6⊆ W that |V (P )| ≥ 4. Since cographs do not
contain paths of length 3 as induced subgraphs, there exists a path P ′ of G between w and w′ such that
|V (P ′)| ≤ 3 and V (P ′) ⊆ V (P ). Then, let T ′ be the graph with vertex set V (T ′) = (V (T ) \ V (P )) ∪ V (P ′) and
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edge set E(T ′) = (E(T ) \ E(P )) ∪ E(P ′). One can easily verify that T ′ is a connection tree of G for W such
that R(T ) = ∅ and L(T ′) ( L(T ), which contradicts the minimality of |L(T )|.

For each graph G, we let cc(G) denote the set of connected components of G, and we let o(G) = |cc(G)|
denote the number of connected components of G.

Corollary 3.6. Let G be a cograph, W ⊆ V (G) be a non-empty terminal set, and let T be a connection tree of
G for W such that R(T ) = ∅. If |L(T )| is minimum, then |L(T )| = o(G[W ])− 1.

Proof. Since R(T ) = ∅, it is straightforward that |L(T )| ≥ o(G[W ]) − 1. On the other hand, it follows from
Lemma 3.5 that, for each u ∈ L(T ), NT (u) ⊆ W . In addition, we note that, if u ∈ L(T ) and NT (u) = {w,w′},
then w and w′ belong to distinct connected components of G[W ], otherwise the path (w, u,w′) of T could be
replaced by a shortest path of G[W ] between w and w′, yielding a connection tree T ′ of G for W such that
L(T ′) ( L(T ). Therefore, |L(T )| ≤ o(G[W ])− 1.

Corollary 3.6 establishes that, whenever a cograph G admits a connection tree for a non-empty terminal
set W ⊆ V (G) that does not contain routers, G admits a connection tree T for W such that R(T ) = ∅ and
L(T ) = o(G[W ]) − 1. More importantly, it establishes that o(G[W ]) − 1 is the minimum possible number of
linkers that such a tree T can have. Therefore, if I = (G,W, `, r) is an instance of TCP such that G is a cograph
and r = 0, then ` must be at least o(G[W ])− 1, otherwise I is certainly a no-instance of the problem.

A connection forest of a graph G for a non-empty terminal set W is a subgraph F of G such that F is a
forest and

⋃
T∈cc(F ) leaves(T ) ⊆W ⊆ V (F ). A connection forest F is said to be routerless if

⋃
T∈cc(F ) R(T ) = ∅.

For each graph G and each non-empty terminal W ⊆ V (G), we let

λ[G,W ] = min{o(F ) | F is a routerless connection forest of G for W}.

As a degenerate case, we define λ[G, ∅] = 0.
We note that λ[G,W ] = 1 if and only if G admits a connection tree of G for W such that R(T ) = ∅.

Lemma 3.7. Let G be a cograph and W ⊆ V (G) be a terminal set. If G is the disjoint union of k ≥ 2 cographs
G1, . . . , Gk, then

λ[G,W ] =
∑

i∈{1,...,k}

λ[Gi, V (Gi) ∩W ].

Proof. Since G is the disjoint union of G1, . . . , Gk, there is no edge between the vertices of Gi and the vertices
of Gj for any i, j ∈ {1, . . . , k}, with i 6= j. Thus, λ[G,W ] ≥

∑
i∈{1,...,k} λ[Gi, V (Gi) ∩W ]. On the other hand,

for each i ∈ {1, . . . , k} with V (Gi) ∩W 6= ∅, let Fi be a routerless connection forests of Gi for V (Gi) ∩W with
the minimum number of connected components. One can readily verify that F = F1 ∪ · · · ∪ Fk is a routerless
connection forests of G for W . Therefore, λ[G,W ] ≤

∑
i∈{1,...,k} λ[Gi, V (Gi) ∩W ].

Lemma 3.8. Let G be a cograph and W ⊆ V (G) be a terminal set. If G is the join of k ≥ 2 cographs G1, . . . , Gk
and there exists a unique i ∈ {1, . . . , k} such that V (Gi) ∩W 6= ∅, then

λ[G,W ] = max{1, λ[Gi,W ]− n+ ni},

where n = |V (G)| and ni = |V (Gi)|.

Proof. Let F be a routerless connection forest of G for W . Since W ⊆ V (Gi), dF (u) = 2 for each u ∈ V (F ) \
V (Gi). This implies that, for each u ∈ V (G)\V (Gi), there at most two distinct connected components of Gi that
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Figure 4. Graph F , with S = {u1, . . . , u|S|} and α(ul) = Hl for each l ∈ {1, . . . , |S|}.

are connected in F by u. In other words, if T is the connected component of F that contains u ∈ V (G) \ V (Gi),
then o(T − u) ≤ 2. Thus,

λ[G,W ] ≥ max{1, λ[Gi,W ]− |V (G) \ V (Gi)|}.

On the other hand, let Fi be a routerless connection forest of Gi for W with the minimum number of connected
components, i.e. o(Fi) = λ[Gi,W ], and let S ⊆ V (G) \ V (Gi) such that |S| = min{|V (G) \ V (Gi)|, o(Fi)− 1}.
Also, let T ∈ cc(Fi), wT ∈ V (T ) ∩W and α : S → cc(Fi) \ {T} be an injective map. Additionally, let wH ∈
V (H) ∩W for each H ∈ cc(Fi) \ {T}. We define F as the graph (see Fig. 4) with vertex set V (F ) = V (Fi) ∪ S
and edge set

E(F ) = E(Fi) ∪ {wTu, uwH | u ∈ S,H ∈ cc(Fi) \ {T}, α(u) = H}.

One can verify that F is as routerless connection forest of G for W such that o(F ) = λ[Gi,W ] − |S| =
max{1, λ[Gi,W ]− |V (G) \ V (Gi)|}. This implies that

λ[G,W ] ≤ max{1, λ[Gi,W ]− n+ ni},

concluding the proof.

Theorem 3.9. TCP is linear-time solvable on cographs.

Proof. Let I = (G,W, `, r) be an instance of TCP, where G is a cograph on n vertices and m edges. Assume with-
out loss of generality that |W | ≥ 3, G is connected but G[W ] is not connected. Moreover, based on Lemma 3.4
and on Corollary 3.6, assume that r = 0 and ` ≥ o(G[W ]), respectively. Then, compute λ[G,W ] following the
rules described below:

λ[G,W ] =



 case 1. |V (G)| = 1 :

0 if V (G) ∩W = ∅,
1 otherwise;[

case 2. G = G1 ∪ · · · ∪Gk, for some k ≥ 2 :∑
i∈{1,...,k} λ[Gi, V (Gi) ∩W ];

case 3. G = G1 ∧ · · · ∧Gk, for some k ≥ 2 :

0 if ∀ i ∈ {1, . . . , k}, V (Gi) ∩W = ∅,
1 if ∃ i, j ∈ {1, . . . , k}, i 6= j, V (Gi) ∩W 6= ∅ and V (Gj) ∩W 6= ∅,
max{1, λ[Gi,W ]− n+ ni} if ∃! i ∈ {1, . . . , k}, V (Gi) ∩W 6= ∅,

where n = |V (G)| and ni = |V (Gi)|.
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The correctness of the rules follows from Lemmas 3.7 and 3.8. Since G admits a routerless connection tree if
and only if λ[G,W ] = 1, we have that I is a yes-instance of TCP if and only if λ[G,W ] = 1.

Now, we analyse the time complexity of this algorithm. First, we note that λ[G,W ] can be computed in a
bottom-up manner, according to the post-order traversal of the cotree TG associated with G, using a dynamic
programming matrix indexed by the nodes of TG. Moreover, we recall that TG can be obtained in time O (n+m)
cf. [6], and that, by definition, the number of nodes of TG is O (n). Additionally, we note that, before computing
λ[G,W ], TG can be preprocessed in time O (n) so that each node u of TG is associated with a flag which informs
whether or not V (Gu) ∩W 6= ∅, where Gu denotes the subgraph of G corresponding to the subtree T uG of TG
rooted at u, i.e. Gu is the subgraph of G induced by the leaves of T uG . Thus, one can verify that, for each node
u of TG, the cell related to u of our dynamic programming matrix, which corresponds to λ[Gu, V (Gu)∩W ], can
be computed in time O (dTG(u)). Since TG is a tree on O (n) nodes, we have that

∑
u∈V (TG) dTG(u) = O (n) .

Therefore, λ[G,W ] can be computed in linear time.

4. Graphs of bounded maximum degree

In this section, we analyse the complexity of TCP when restricted to graphs of bounded maximum degree.
More specifically, we prove that TCP remains NP-complete on graphs of maximum degree 3 even if either the
parameter ` ≥ 0 or the parameter r ≥ 0 is fixed. In particular, for fixed r ≥ 0, we show that TCP is NP-complete
on graphs of maximum degree 3 that are planar.

It is worth mentioning that, if the input graph G is connected and has maximum degree at most 2, then G is
either a path or a cycle, and consequently TCP can be trivially solved in polynomial-time, regardless of ` or r.
Thus, we obtain that our results establish an NP-complete versus polynomial-time solvable dichotomy for TCP
with respect to the maximum degree of the input graph.

Another interesting fact about our results is that they separate the complexity of TCP from the complexity
of its strict variant, S-TCP. Indeed, while we prove that, for each fixed ` ≥ 0, TCP is NP-complete on graphs
of maximum degree 3, S-TCP was proved to be polynomial-time solvable on graphs of maximum degree 3 even
if ` ≥ 0 is fixed [25].

4.1. Fixed number of linkers

First, we consider the case in which the parameter ` ≥ 0 is fixed:

Theorem 4.1. For each ` ≥ 0, TCP remains NP-complete when restricted to graphs of maximum degree 3.

To prove Theorem 4.1, we present a polynomial-time reduction from an NP-complete variant of 3-SAT called
3-SAT(3) cf. [28]. The 3-SAT(3) problem has as input a set X of boolean variables and a set C of clauses over
X that satisfy the following conditions:

� Each clause in C has two or three distinct literals;
� Each variable in X appears exactly twice positive and once negative in the clauses belonging to C.

The problem then asks whether there exists a truth assignment α : X → {false, true} such that every clause in
C has at least one true literal under α.

Construction 4 (Reduction from 3-SAT(3) to TCP on Graphs of Maximum Degree 3). Let I = (X, C) be an
instance of 3-SAT(3), with variable set X = {x1, x2, . . . , xp} and clause set C = {C1, C2, . . . , Cq}, and let ` be
a non-negative integer. We let G be the graph obtained from I and ` as follows (see Fig. 5a):

� Create the vertices u1, u2, . . . , u` and, for each i ∈ {1, 2, . . . , `− 1}, add the edges uiui+1; moreover, create
the vertices wI and vI and add the edges wIu1 and u`vI , originating the path PI = (wI , u1, . . . , u`, vI);

� For each variable xi ∈ X, create the gadget Gi such that

V (Gi) = {w1
i , w

2
i , t

1
i , t

2
i , fi} and E(Gi) = {w1

i t
1
i , t

1
i t

2
i , t

2
iw

2
i , w

2
i fi, fiw

1
i };
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� Create a complete binary tree TI , rooted at vI , whose leaves are the vertices w1
1, . . . , w

1
p;

� For each clause Cj ∈ C, create the vertices v1j , v2j and v3j , and add the edges v1j v
2
j , v2j v

3
j and v3j v

1
j ;

� For each clause Cj ∈ C, add the edge tai v
b
j if the b-th literal belonging to Cj corresponds to the a-th

occurrence in I of the positive literal xi, for xi ∈ X, a ∈ {1, 2} and b ∈ {1, . . . , |Ci|}; on the other hand,
add the edge fiv

b
j if the b-th literal belonging to Cj corresponds to the (single) occurrence in I of the

negative literal xi, for xi ∈ X and b ∈ {1, . . . , |Cj |}.

Clearly, G is a graph of maximum degree 3. Then, we let g(I, `) = (G,W, `, r) be the instance of TCP such
that W = {wI} ∪ V (TI) ∪ {w1

i , w
2
i | xi ∈ X} ∪ {v1j , v2j , v3j | Cj ∈ C} and r = 2p.

Lemma 4.2. Let I = (X, C) be an instance of 3-SAT(3). For each ` ≥ 0, I is a yes-instance of 3-SAT(3) if
and only if the instance g(I, `) described in Construction 4 is a yes instance of TCP.

Proof. Assume that X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. Additionally, assume that g(I, `) =
(G,W, `, r).

First, suppose that there exists a truth assignment α : X → {false, true} such that every clause belonging to
C has at least one true literal under α. Then, let S be the vertex set defined as follows

S = {t1i , t2i | xi ∈ X,α(xi) = true} ∪ {fi | xi ∈ X,α(xi) = false}
∪ {w1

i , w
2
i | xi ∈ X} ∪ {v1j , v2j , v3j | Cj ∈ C} ∪ V (PI) ∪ V (TI),

and let G[S] be the subgraph of G induced by S. We note that G[S] is connected but may contain cycles. Thus,
let T be a spanning tree subgraph of G[S] that contains all edges of G[S] except for possibly not containing
some edges between the vertices v1j , v2j and v3j , for Cj ∈ C. In other words, T is a spanning tree subgraph of

G[S] such that E(T ) ⊇ E(G[S]) \ {vaj vbj | a, b ∈ {1, 2, 3}, Cj ∈ C}. It is not hard to check that T is a connection
tree of G for W with linker set L(T ) = {u1, . . . , u`} and router set

R(T ) = {t1i , t2i | xi ∈ X,α(xi) = true} ∪ {fi | xi ∈ X,α(xi) = false}.

Therefore, g(I, `) is a yes-instance of TCP.
Figure 5 depicts the instance g(I, `) = (G,W, `, r) of TCP, obtained from an instance I = (X, C) of 3-SAT(3)

and a non-negative integer `. It also depicts a connection tree T of G for W , obtained from a truth assignment
α : X → {false, true}.

Conversely, suppose that g(I, `) is a yes-instance of TCP, and let T be a connection tree of G for W such
|L(T )| ≤ ` and |R(T )| ≤ 2p. We note that the path PI must be in T , since every path of G between the terminal
vertex wI and any other terminal vertex w ∈W \ {wI} contains all the vertices of PI . Consequently, the graph
T ′ = T − PI cannot contain any linker, and all non-terminal vertices of T ′ must be routers. This, along with
the fact that ∆(G) = 3, implies that NT (v) = NG(v) for each v ∈ V (T ′) \W . Hence, if t1i ∈ V (T ) or t2i ∈ V (T ),
then w1

i , t
2
i ∈ NT (t1i ) and w2

i , t
1
i ∈ NT (t2i ). Analogously, if fi ∈ V (T ), then w1

i , w
2
i ∈ NT (fi). Thus, since T is

acyclic, we have that, for each xi ∈ X, either t1i , t
2
i ∈ V (T ) and fi 6∈ V (T ), or t1i , t

2
i 6∈ V (T ) and fi ∈ V (T ).

Then, we define a truth assignment α : X → {false, true} as follows: for each xi ∈ X, α(xi) = false if and only
if fi ∈ V (T ). We note that, for each Cj ∈ C, every path of G between the terminal vertices v1j , v

2
j , v

3
j and any

other terminal vertex w ∈W \ {v1j , v2j , v3j } must contain one of the vertices t1i , t
2
i , fi for some xi ∈ X. Moreover,

by supposition, V (T ) ⊇ W ⊇ {v1j , v2j , v3j | Cj ∈ C}. Consequently, every clause in C has at least one true literal
under α. Therefore, I is a yes-instance of 3-SAT(3).

4.2. Fixed number of routers

Now, we consider the case in which the parameter r ≥ 0 is fixed:
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Figure 5. (a) Graph G and terminal set W (blue square vertices) of the instance g(I, `) of
TCP obtained from the instance I = (X, C) of 3-SAT(3), where X = {x1, x2, x3} and C =
{C1 = {x1, x2, x3}, C2 = {x1, x2, x3}, C3 = {x1, x2, x3}}, and from a non-negative integer `. (b)
Connection tree T of G for W , obtained from the truth assignment α : X → {false, true} such
that α(x1) = true, α(x2) = true and α(x3) = false.

Theorem 4.3. For each r ≥ 0, TCP remains NP-complete when restricted to planar graphs of maximum degree
3.

To prove Theorem 4.3, we first show through Propositions 4.4 and 4.5 that the st-Hamiltonian path
problem is NP-complete on planar graphs of maximum degree 3. Then, we present a polynomial-time reduction
from this particular case of st-Hamiltonian path to TCP. The st-Hamiltonian path problem is the variant
of the Hamiltonian path problem that asks whether the input graph has a Hamiltonian path between two
given vertices s and t.

Next proposition is an intermediate step in order to show the NP-completeness of st-Hamiltonian path on
planar graphs of maximum degree 3.

Proposition 4.4. Hamiltonian cycle remains NP-complete when restricted to planar graphs of maximum
degree 3 that have at least two adjacent vertices of degree 2 each.

Proof. Itai et al. [19] proved that Hamiltonian cycle is NP-complete on planar graphs of maximum degree
3. Based on their proof (see Lemma 2.1 [19]), we can suppose without loss of generality that the input graph G
has at least one vertex of degree 2. Thus, let u ∈ V (G) be such a vertex, and let e = uv be an edge that has u
and v as endpoints, for some v ∈ V (G) \ {u}. Then, we define H as the graph obtained from G by subdividing
e, i.e. by removing e, adding a new vertex ue and adding the edges uue and uev. We note that H is a graph of
maximum degree 3 that has at least two adjacent vertices of degree 2 each, namely u and ue. Furthermore, it
is immediate that G has a Hamiltonian cycle if and only if H has a Hamiltonian cycle.

Proposition 4.5. st-Hamiltonian path remains NP-complete when restricted to planar graphs of maximum
degree 3 in which s and t have degree 1 each.

Proof. Let G be a planar graph of maximum degree 3. Based on Proposition 4.4, assume without loss of
generality that G contains two vertices u, v ∈ V (G) such that uv ∈ E(G) and dG(u) = dG(v) = 2. Then, let
H be the graph obtained from G by adding two new vertices s and t, and by adding the edges su and vt. We
note that H is a graph of maximum degree 3 and that s and t have degree 1 in H each. Furthermore, it is
straightforward that G has a Hamiltonian cycle if and only if H has a st-Hamiltonian path.
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Figure 6. (a) Case in which dG(ui) = 2: vertices v1i , v
2
i , u

1
i , u

2
i . (b) Case in which dG(ui) = 3:

vertices v1i , v
2
i , u

1
i , u

2
i , u

3
i .

Below, we finally describe our polynomial-time reduction from st-Hamiltonian path to TCP. We note that
this reduction is slightly similar to the one described in Construction 3 to prove the NP-completeness of TCP
on strongly chordal graphs.

Construction 5 (Reduction from st-Hamiltonian path to TCP on Planar Graphs of Maximum Degree 3).
Let G be a planar graph of maximum degree 3 and s, t ∈ V (G) be distinct vertices of G. Based on Proposition 4.5,
assume without loss of generality that dG(s) = dG(t) = 1. Moreover, assume that every vertex of G different from
s and t has degree at least 2, otherwise G would certainly not admit a st-Hamiltonian path, i.e. a Hamiltonian
path between s and t. Also, assume that V (G) = {u1, . . . , un}, for some positive integer n, where s = u1 and
t = un. Let r be a non-negative integer. For each ui ∈ V (G) \ {s, t}, let αi : NG(ui)→ |NG(ui)| be the bijection
such that, for each two distinct vertices uj1 , uj2 ∈ NG(ui), we have that αi(uj1) < αi(uj2) if and only if j1 < j2.
We let G′ be the graph obtained from G, s, t and r as follows (see Fig. 7):

� Add all vertices of G to G′;
� For each vertex ui ∈ V (G) of degree 2 in G, add new vertices v1i , v

2
i , u

1
i , u

2
i and add the edges uiv

1
i , uiv

2
i ,

v1i u
1
i and v2i u

2
i (see Fig. 6a);

� For each vertex ui ∈ V (G) of degree 3 in G, add new vertices v1i , v
2
i , u

1
i , u

2
i , u

3
i and add the edges uiv

1
i ,

uiv
2
i , v1i u

2
i , v

2
i u

2
i , v

1
i u

1
i and v2i u

3
i ; (see Fig. 6b)

� For each vertex ui ∈ V (G) and each vertex uj ∈ NG(ui), add the edges uai u
b
j , where a = αi(uj) and

b = αj(ui);
� If r ≥ 1, create the gadget Hr and the terminal set Wr described in Construction 2, and add the edge ρrs;

otherwise, define Wr = ∅.

For each ui ∈ V (G), let G′i be the subgraph of G′ illustrated in Figure 6, i.e. the subgraph of G′ induced by

{ui, v1i , v2i }∪{u
j
i | j ∈ {1, . . . , dG(ui)}}. Note that, Hr and, for each ui ∈ V (G), G′i are planar. Additionally, it is

not hard to verify that the input graph G is isomorphic to the graph resulting from G′−Hr by identifying every
subgraph G′i into the vertex ui. Therefore, since G is planar, we have that G′ is planar as well. Furthermore, it
straightforward that G′ is a graph of maximum degree 3. Then, we let g(G, s, t, r) = (G′,W, `, r) be the instance
of TCP such that W = V (G) ∪Wr and ` = 4n− 4.

Lemma 4.6. Let G be a graph of maximum degree 3 and s, t ∈ V (G) be two distinct vertices of G. Assume that
s and t have degree 1 in G each. For each r ≥ 0, G admits a st-Hamiltonian path if and only if the instance
g(G, s, t, r) described in Construction 5 is a yes-instance of TCP.

Proof. Assume that V (G) = {u1, . . . , un}, where s = u1 and t = un, and that g(G, s, t, r) = (G′,W, `, r).
Additionally, for simplicity, consider Wr = V (Hr) = E(Hr) = ∅ if r = 0.

First, suppose that there exists in G a Hamiltonian path

P = (uj1 , uj2 , . . . , ujn−1
, ujn)
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Figure 7. (a) Graph G of maximum degree 3, with two distinct vertices s, t ∈ V (G) such that
dG(s) = dG(t) = 1. (b) Graph G′ with terminal set W (blue square vertices) of the instance
g(G, s, t, r) of TCP described in Construction 5, obtained from G, the vertices s and t, and a
non-negative integer r.

such that s = uj1 and t = ujn . Then, let S be the vertex set defined as follows:

S = V (Hr) ∪ V (P ) ∪ {v1i , v2i | i ∈ {2, . . . , n− 1}} ∪ {uαj2
(s)

j2
, u
αjn−1

(t)

jn−1
}

∪ {uaji , u
b
ji+1
| a = αji(uji+1

), b = αji+1
(uji), i ∈ {2, . . . , n− 2}},

where αi denotes the bijection from NG(ui) to |NG(ui)| described in Construction 5. We note that G′[S] is
connected but may contain cycles. More precisely, every cycle of G′[S] is of the form (ui, v

1
i , u

2
i , v

2
i , ui), and it

exists if and only if dG(ui) = 3 and either S ⊇ {u1i , u2i } or S ⊇ {u2i , u3i }, for ui ∈ V (G) \ {s, t}. Thus, we let T
be the graph obtained from G′[S] by removing, for each vertex ui ∈ V (G) \ {s, t} with dG(ui) = 3, the edge
v1i u

2
i if S ⊇ {u1i , u2i }, or the edge v2i u

2
i if S ⊇ {u2i , u3i }. One can verify that T is a connection tree of G′ for W

such that L(T ) = S \ (V (Hr) ∪ V (G)) and R(T ) = {ρ1, . . . , ρr}. Therefore, g(G, s, t, r) is a yes-instance of TCP.
Consider the graph G depicted in Figure 7a and the graph G′ and the terminal set W depicted in Figure 7b,

obtained from G and a non-negative integer r. Figure 8 illustrates a connection tree T of G′ for W obtained
from the st-Hamiltonian path of G depicted in Figure 8a.

Conversely, suppose that g(G, s, t, r) is a yes-instance of TCP, and let T be a connection tree of G′ for W
such that |L(T )| ≤ 4n− 4 and |R(T )| ≤ r. We note that R(T ) = {ρ1, . . . , ρr}. Consequently, T ′ = T −Hr cannot
contain any router, and all non-terminal vertices of T ′ must be linkers. Moreover, by construction, s and t have
degree 1 in T ′ each. This implies that the vertices u2, . . . , un−1 have degree exactly 2 in T ′ each, otherwise T
would not be connected or W 6⊆ V (T ). Hence, T ′ consists in a path P ′ between s and t of the form

P ′ = (s, ua2j2 , v
c2
j2
, uj2 , v

c′2
j2
, ub2j2 , . . . , u

an−1

jn−1
, v
cn−1

jn−1
, ujn−1 , v

c′n−1

jn−1
, u
bn−1

jn−1
, t),

where, for each i ∈ {2, . . . , n − 2}, ai = αji(uji−1), bi = αji(uji+1), and ci, c
′
i ∈ {1, 2} with ci 6= c′i. Therefore,

one can verify that (s, uj2 , . . . , ujn−1
, t) is a st-Hamiltonian path of G.
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Figure 8. (a) st-Hamiltonian path P of the graph G depicted in Figure 7a. (b) Connection
tree T of the graph G′ for the terminal set W depicted in Figure 7b, obtained from P .

5. Concluding remarks

We conclude this work by posing some open questions. First, we ask about the existence of a graph class
G on which Steiner tree is polynomial-time solvable while TCP remains NP-complete for fixed `. We have
shown that, on strongly chordal graphs, TCP is NP-complete for each r ≥ 0, whereas Steiner tree is known
to be polynomial-time solvable. However, the complexity of TCP on strongly chordal graphs for fixed ` has not
been settled yet. Analogously, we ask whether there exists a graph class G on which TCP is polynomial-time
solvable for fixed ` while Steiner tree remains NP-complete. We have shown that, on split graphs, TCP is
polynomial-time solvable for fixed r ≥ 1, whereas Steiner tree is known to be NP-complete. However, up to
our knowledge, for fixed `, there is no known example of such a separating class.

In addition, it is worth mentioning that, in our tractability proof of TCP on split graphs, only the cases in
which r ≥ 1 or W ∩K 6= ∅ are considered. Such hypotheses are imperative in our argumentation so as to ensure
the connectivity of the sought connection tree. Thus, we leave as an open question whether TCP can be solved
in polynomial-time on split graphs when r = 0 and W ∩K = ∅.

We also leave as an open question whether TCP parameterized by clique-width is in XP. Through a
parameterized-reduction from Hamiltonian path, we have shown that TCP parameterized by clique-width is
W[1]-hard. Nevertheless, the question whether TCP is in XP remains unsettled.

Finally, we ask about the complexity of TCP parameterized by the number of terminal vertices. Even though
it is well-known that Steiner tree parameterized by the number of terminal vertices is in FPT [12], the
complexity of the corresponding parameterization of TCP is widely open.
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Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, Association for Computing Machinery, New
York, NY, USA (2007), pp. 67–74.

[3] A. Bondy and U. Murty, Graph Theory, Graduate Texts in Mathematics. Springer London (2008).
[4] C.J. Colbourn and L.K. Stewart, Permutation graphs: connected domination and Steiner trees. Discrete Math. 86 (1990)

179–189.



20 A.A. DE MELO ET AL.

[5] D.G. Corneil, H. Lerchs and S.L. Burlingham, Complement reducible graphs. Discrete Appl. Math. 3 (1981) 163–174.

[6] D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs. SIAM J. Comput. 14 (1985) 926–934.

[7] B. Courcelle, J. Engelfriet and G. Rozenberg, Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46 (1993) 218–270.
[8] M. Cygan, M. Pilipczuk, M. Pilipczuk and J.O. Wojtaszczyk, Kernelization hardness of connectivity problems in d-degenerate

graphs. Discrete Appl. Math. 160 (2012) 2131–2141.
[9] A. D’Atri and M. Moscarini, Distance-hereditary graphs, Steiner trees, and connected domination. SIAM J. Comput. 17 (1988)

521–538.
[10] M.C. Dourado, R.A. Oliveira, F. Protti and U.S. Souza, Conexão de Terminais com Número Restrito de Roteadores e Elos, in
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