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Abstract

The decision problem MAXCUT is known to be

NP‐complete since the seventies, but only recently

its restriction to interval graphs has been announced

to be hard by Adhikary, Bose, Mukherjee, and Roy.

Building on their proof, in this paper we prove that

the MAXCUT problem is NP‐complete on permutation

graphs. This settles a long‐standing open problem

that appeared in the 1985 column of the Ongoing

Guide to NP‐completeness by David S. Johnson, and is

the first NP‐hardness entry for permutation graphs in

such column.
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1 | INTRODUCTION

A cut is a partition of the vertex set of a graph into two disjoint parts. Themaximum cut problem
(denoted by MAXCUT, for short) aims to determine a cut with the maximum number of edges
for which each endpoint is in a distinct part. The decision problem MAXCUT is known to be
NP‐complete since the seventies [10], and only recently its restriction to interval graphs has
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been announced to be hard by Adhikary, Bose, Mukherjee, and Roy [1]. This settles a long‐
standing open problem from the Ongoing Guide to NP‐completeness by David S. Johnson [13].

In his column, David S. Johnson presented a two‐page summary table, with a column for
each of the 10 most famous NP‐complete graph problems, and a row for each of 30 selected
graph classes. Among those graph classes, special emphasis was given to subclasses of perfect
graphs and of intersection graphs having broad algorithmic significance. The emphasis was on
the restrictions themselves and how they affect the complexity of the considered NP‐hard
problems. The discussion had focused on the particularly fertile domain of graph theory, where
the central open problem at that time was the recognition of perfect graphs.

Many important graph classes are defined or can be characterized by a geometric
intersection model. Two particularly well‐studied examples are subclasses of perfect graphs: the
classes of interval graphs and of permutation graphs [8, 12, 15]. In their respective models, the
intersecting objects are line segments in the plane, with different restrictions imposed on their
positions. In interval graphs, each line segment must have its endpoints on a single line, while
in permutation graphs, their endpoints must lie on two distinct parallel lines.

Besides selecting the recognition of perfect graphs as the famous open problem, in his
column, David S. Johnson selected only two others as “open and may well be hard” to resolve
problems: Hamiltonian circuit restricted to permutation graphs and edge‐coloring restricted to
planar graphs. Today, we know that recognition of perfect graphs and Hamiltonian circuit
restricted to permutation graphs can both be solved in polynomial time. On the other hand,
edge‐coloring restricted to planar graphs remains a challenging open problem. Please, refer to
[4] for an updated summary table. Surprisingly, after 35 years, the only newly resolved entry for
permutation graphs is a Hamiltonian circuit.

The present paper settles a long‐standing open problem proposed by Johnson, by providing
the first NP‐hardness proof for a problem on permutation graphs in Johnson's table.

Theorem 1. MAXCUT is NP‐complete on permutation graphs.

Our proof is based on Adhikary et al.'s construction used to prove the NP‐completeness of
MAXCUT on interval graphs [1]. It is interesting to notice that, among the problems selected by
Johnson, MAXCUT is the only one proven NP‐complete for both interval graphs and permutation
graphs. Despite that, the interval graph constructed by Adhikary et al. is not a permutation
graph, and our constructed permutation graph is not an interval graph. Thus, we leave as
an open question the complexity of MAXCUT on permutation interval graphs.

Our paper is organized as follows. In Section 1.1, we present the basic concepts and
notations. In Section 2, we present the main gadget in the reduction of Adhikary et al. [1],
which also plays an important role in our reduction. In Section 3, we present the construction
of Adhikary et al. [1] and show that it does not lead to a permutation graph. The presentation of
their construction is also useful in Section 4, where we finally present the proof of Theorem 1.
In Section 5, we prove that our constructed permutation graph is not an interval graph, and
propose the complexity of MAXCUT on permutation interval graphs as an open problem.

1.1 | Preliminaries

In this work, all graphs considered are simple. For missing definitions and notation of graph
theory, we refer to [3].
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LetG be a graph. A subset K V G( )⊆ is a clique if every two distinct vertices in K are adjacent. A
subset S V G( )⊆ is a stable set if no two vertices in S are adjacent. Let X and Y be two disjoint
subsets ofV G( ). We say that X is complete to Y if every vertex in X is adjacent to every vertex in Y ,
and that X is anticomplete to Y if there are no edges between X and Y . We let E X Y( , )G be the
subset of E G( ) with an endpoint in X and the other endpoint inY . A cut ofG is a partition ofV G( )

into two parts A B V G, ( )⊆ , denoted by A B[ , ]. The edge set E A B( , )G is called the cut‐set of G
associated with A B[ , ]. For each two vertices u v V G, ( )∈ , we say that u and v are in the same part of
A B[ , ] if either u v A{ , } ⊆ or u v B{ , } ⊆ ; otherwise, we say thatu and v are in opposite parts of A B[ , ].
Denote bymc G( ) the maximum size of a cut‐set ofG. The MAXCUT problem has as input a graphG
and a positive integer k, and it asks whethermc G k( ) ≥ .

Let π and π′ be two permutations of the same set, sayV . A graphG is called the intersection
graph related to π π{ , ′} if V G V( ) = and, for each two vertices u v V G, ( )∈ , uv E G( )∈

if and only if u v<π and v u<π′ . In this case, we also say that π π{ , ′} is a permutation
model of G. A graph is a permutation graph if it is the intersection graph related to a
permutation model.

Given two permutations π and γ of disjoint subsets X and Y , respectively, we write πγ to denote
the permutation of X Y∪ given by the concatenation of π with γ . Also, we write π← to denote the
reverse of the permutation π , that is, if π v v= ( , …, )i1 , then π v v= ( , …, )i 1

← . To simplify the notation,
given a set Z , we sometimes use the same symbol, Z , to denote also a chosen permutation of the

elements of Z . In such cases, Z
←⎯⎯

represents the reverse of the chosen permutation for Z .
An interval model is a finite multiset of closed intervals of the real line. LetG be a graph

and be an interval model. An‐representation ofG is a bijection ϕ V G: ( ) → such that,
for every two distinct vertices u v V G, ( )∈ , we have that uv E G( )∈ if and only if
ϕ u ϕ v( ) ( )∩ ≠ ∅. If such an ‐representation exists, we say that  is an interval model of
G and that G is an interval graph.

We write i n[ ]∈ to mean i n{1, …, }∈ .

2 | GRAINED GADGET

In this section, we present the notion of grained gadgets, which was defined in [6] as a
generalization of the so‐called V ‐gadgets and E‐gadgets. The latter was introduced by Adhikary
et al. [1] to prove the NP‐completeness of MAXCUT on interval graphs.

Let x and y be positive integers. An x y( , )‐grained gadget is a split graph H formed by a
clique K K′ ″∪ of size y2 and a stable set S S′ ″∪ of size x2 . Additionally, K′ is complete to S′,
K″ is complete to S″, and we have    K K y′ = ″ = and    S S x′ = ″ = . Figure 1 depicts an
interval representation of an x y( , )‐grained gadget. One can readily verify that the intersection

FIGURE 1 Interval representation of an x y( , )‐grained gadget, cf. [6].
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graph related to the pair of permutations K S S K S K K S{ ′ ′ ″ ″, ′ ″ ′ ″}
←←

(see Figure 2) is an x y( , )‐
grained gadget. Thus, grained gadgets are interval graphs and permutation graphs.

Let H be an x y( , )‐grained gadget and G be a supergraph of H . For each vertex
u V G V H( ) ( )∈ ⧹ , we say that (see Figure 3): u covers H ifV H N u( ) ( )G⊆ ; u weakly intersects H
if either N u V H K( ) ( ) = ′G ∩ or N u V H K( ) ( ) = ″G ∩ ; and that u strongly intersects H if either
N u V H K S( ) ( ) = ′ ′G ∩ ∪ or N u V H K S( ) ( ) = ″ ″G ∩ ∪ . Moreover, we say that G respects the
structure of H if, for each vertex u V G V H( ) ( )∈ ⧹ , either N u V H( ) ( ) =G ∩ ∅ or u satisfies one
of the previous conditions.

The next lemma establishes the key property of grained gadgets with respect to the MAXCUT

problem. Intuitively, it states that, for suitable values of x and y, if G is a supergraph that
respects the structure of an x y( , )‐grained gadget, then, in any maximum cut A B[ , ] of G, the
vertices belonging to K S′ ″∪ are placed in the same part of A B[ , ], opposite to the part
containing the vertices belonging to K S″ ′∪ .

Lemma 1 (de Figueiredo et al. [5]). Let x and y be positive integers, H be an x y( , )‐grained
gadget andG be a supergraph that respects the structure of H . Let A B[ , ] be a maximum cut
ofG. Also, t be the number of vertices inV G V H( ) ( )⧹ adjacent to some vertex of H , ℓ be the
number of vertices of G adjacent to some vertex in S′, and r be the number of vertices of G
adjacent to some vertex in S″. If ℓ and r are odd, y t x y> ( − 1)∕ and x t y> + 2 , then each
of the following holds:

1. S A′ ⊆ and K B′ ⊆ , or vice versa;
2. S A″ ⊆ and K B″ ⊆ , or vice versa;
3. K A′ ⊆ and K B″ ⊆ , or vice versa.

In the remainder of the text, when a grained gadget H is not clear in the context, we write
S H′( ), S H″( ), K H′( ), and K H″( ) to denote the stable sets S′ and S″ and the cliques K′ and K″
of H , respectively.

FIGURE 2 A permutation model of a grained gadget.

(A) (B) (C)

FIGURE 3 Vertex u V G V H( ) ( )∈ ⧹ (A) covering H , (B) weakly intersecting H , and (C) strongly
intersecting H . The set K K′ ″∪ is a clique and the set S S′ ″∪ is a stable set. A line between sets, or between u

and some set, means that all the edges occur. (A) Covering intersection, (B) weak intersection, and (C) strong
intersection.

8 | DE FIGUEIREDO ET AL.



3 | ADHIKARY ET AL.'S REDUCTION

In this section, we present the construction given by Adhikary et al. [1] of an interval graph that
proves the NP‐completeness of MAXCUT in this class. As we see in Section 4, the general idea
behind their construction can also be used to obtain a permutation graph instead. Nevertheless,
the question of whether their construction is also permutation might arise. We prove here that
this is not the case.

Given a cubic graph G, let π v v v= ( , , …, )V n1 2 and π e e e= ( , , …, )E m1 2 be arbitrary orderings
of V G( ) and E G( ), respectively. Define the values: q n= 200 + 13 , p q n= 2 + 7 , q n′ = 10 + 12 ,
and p q n′ = 2 ′ + 7 . An interval graph G′ is defined through the construction of one of its
interval models, described as follows (observe Figure 4 to follow the construction):

1. Add to  a p q( , )‐grained gadget i for each vertex v V G( )i ∈ . These gadgets should be
pairwise disjoint, with i appearing completely to the left of i+1 for every i n[ − 1]∈ .

2. Add to  a p q( ′, ′)‐grained gadget j for each edge e E G( )j ∈ . Likewise, these gadgets
should be pairwise disjoint, with j appearing completely to the left of j+1 for every
j m[ − 1]∈ . Additionally, 1 appears completely to the right of n , without intersecting it.

3. Finally, for each edge e v v E G= ( )j i i′ ∈ , with i i< ′, add four intervals L L L L, , ,i j i j i j i j,
1

,
2

′,
1

′,
2 ,

called link intervals, such that:

• Li j,
1 and Li j,

2 (resp., Li j′,
1 and Li j′,

2 ) weakly intersect i (resp., i′ ) to the right of i (resp., i′ );
• Li j,

1 and Li j,
2 (resp., Li j′,

1 and Li j′,
2 ) weakly intersect (resp., strongly intersect) j to the left of j .

As claimed, we show that the constructed graphG′ is not a permutation graph. This is becauseG′
contains the graph X34 depicted in Figure 5A as an induced subgraph, and such a graph is a
forbidden subgraph for comparability graphs, cf. [9, 7], in turn a known superclass of permutation
graphs. To see that this claim holds, observe Figure 5B. Given an edge e v v E G= ( )j i i′ ∈ , with i i< ′,

FIGURE 4 Adhikary et al.'s interval model, with e v v=1 1 2, e v v= n2 1 , and e v v=m n2 .

(A) (B)

FIGURE 5 (A) Forbidden induced subgraph X34 for comparability graphs, cf. [7]. (B) X34 as an induced
subgraph in Adhikary et al.'s construction.

DE FIGUEIREDO ET AL. | 9



it shows the intervals in the grained gadgets of vi, vi′, and ej, as well as some link intervals related to ej.
The adjacencies can be easily checked to be as in the graph of Figure 5A.

In Section 4, we show that a modification of Adhikary et al.'s construction gives us the
desired permutation graph.

4 | OUR REDUCTION

Let G be a cubic graph, and consider π v v v= ( , , …, )V n1 2 and π e e e= ( , , …, )E m1 2 arbitrary
orderings of V G( ) and E G( ), respectively. The values of p q p q, , ′, ′ are not the same as in
Section 3 and are presented later. Again, for each vertex vi, create a p q( , )‐grained gadget, i ,
and for each edge ej, create a p q( ′, ′)‐grained gadget j . For simplicity, denote the sets S′( )i ,
S″( )i , K′( )i , and K″( )i by S S K K′, ″, ′, ″i i i i , respectively. Similarly, denote the sets S′( )j ,
S″( )j , K′( )j , and K″( )j by S S K K′ , ″ , ′ , ″j

e
j
e

j
e

j
e, respectively.

Recall that for each i n[ ]∈ , the permutation model of i consists of the pair of

permutations π π{ , }i i
1 2 where π K S S K= ′ ′i i i i i

1
″ ″ and π S K K S= ′ ″ ′ ″i i i i i

2 ← ⎯⎯⎯←⎯⎯
. Analogously, for each

j m[ ]∈ , the permutation model of j consists of the pair of permutations γ γ{ , }j j
1 2 where

γ K S S K= ′ ′ ″ ″
j j

e
j
e

j
e

j
e1 and γ S K K S= ′ ″ ′ ″

j j
e

j
e

j
e
j
e2

← ⎯⎯⎯⎯ ← ⎯⎯⎯⎯
. Now, for each edge e v v=j i i′, with i i< ′, add four

new vertices L L L L, , ,i j i j i j i j,
1

,
2

′,
1

′,
2 , called link vertices. In what follows, we modify some of the

grained gadget permutations to make L L,i j i j,
1

,
2 (resp., L L,i j i j′,

1
′,
2 ) weakly intersect i (resp., i′ )

and strongly intersect (resp., weakly intersect) j .
If vi is incident to edges j j j, ,1 2 3, with j j j< <1 2 3, then modify one of the permutations

defining i to include the link vertices related to vi as follows:

π K S S C K= ′ ′ ″ ″ ,i i i i i i
1

where Ci denotes the permutation L L L L L Li j i j i j i j i j i j,
1

,
2

,
1

,
2

,
1

,
2

1 1 2 2 3 3
.

Similarly, for each edge e v v=j i i′, i i< ′, we modify one of the permutations defining j to
include the link vertices related to ej as follows:

γ K L L S L L S K= ′ ′ ″ ″ .j j
e

i j i j j
e

i j i j j
e

j
e1

′,
2

′,
1

,
2

,
1

We do not modify πi
2 and γj

2, and keep denoting by πi
2 the permutation S K K S′ ″ ′ ″i i i i

← ⎯⎯⎯ ←⎯⎯
, and by γj

2

the permutation S K K S′ ″ ′ ″j
e e

j
e
j j

e← ⎯⎯⎯⎯ ← ⎯⎯⎯⎯
. Finally, letG′ be the permutation graph related to {Π, Π′}, where

π π γ γ

π π γ γ

Π = … , …, and

Π′ = … , …, .

n m

n m

1
1 1

1
2 2

1
2 2

1
1 1

Figure 6 illustrates our permutation model {Π, Π′}, focusing on the vertex grained gadgets

i and i′ , the edge grained gadget j , and the link vertices L L,i j i j,
1

,
2 and L L,i j i j′,

1
′,
2 related to an

edge e v v=j i i′, with i i< ′.
We remark that the main difference of our permutation graph from the Adhikary et al.'s

interval graph is the fact that, in Adhikary et al.'s interval graph, the link vertices form a clique,
whereas, as we show in Section 5, some link vertices are not adjacent in our permutation graph.
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Additionally, for an edge e v v E G= ( )j i i′ ∈ , with i i< ′, the link vertices L L,i j i j,
1

,
2 (resp., L L,i j i j′,

1
′,
2 )

weakly intersect (resp., strongly intersect) j in Adhikary et al.'s interval graph, whereas in our
permutation graph the link vertices L L,i j i j,

1
,
2 (resp., L L,i j i j′,

1
′,
2 ) strongly intersect (resp., weakly

intersect) j .

Before our proof, we make some observations about the constructed graph to improve the
proof's readability. Note that, for each link vertex L and grained gadget H , we get one of the
following situations. Either the relative order between L and V H( ) in Π is the reverse of their
relative order in Π′, in which case L is complete to V H( ). Or the relative order is the same in
both Π and Π′, in which case L is anticomplete to V H( ). Or L is related to H according to one
of the ways described below.

• L L L{ , }i j i j,
1

,
2∈ and H = i : in this case only the relative orders between L and K″i are reversed

in Π and Π′, that is, L is complete to K″i and anticomplete to V K( ) ″i i ⧹ ;
• L L L{ , }i j i j,

1
,
2∈ and H = j , with e v v=j i i′, i i< ′: in this case the relative orders between L and

K S′ ′j
e

j
e∪ are reversed in Π and Π′, that is, L is complete to K S′ ′j

e
j
e∪ and anticomplete to

V K S( ) ( ′ ′ )j j
e

j
e ⧹ ∪ ; or

FIGURE 6 Vertex and edge grained gadgets, and link vertices related to an edge e v v=j i i′, with i i< ′, in our
permutation model {Π, Π′}.

• L L L{ , }i j i j′,
1

′,
2∈ and H = j , with e v v=j i i′, i i< ′: in this case only the relative orders between

L and K′j
e are reversed in Π and Π′, that is, L is complete to K′j

e and anticomplete to
V K( ) ′j j

e ⧹ .

Proof of Theorem 1. Consider the reduction graphG′ and its permutation model {Π, Π′}

as previously defined. For each e v v E G= ( )j i i′ ∈ , let

{ }L e L L L L( ) = , , , ;j i j i j i j i j,
1

,
2

′,
1

′,
2

and for each v V G( )i ∈ , let

{ }L v L L e v( ) = , is incident to .i i j i j j i,
1

,
2

Also, denote the set of link vertices by , that is,  L e= ( )j
m

j=1 .
We postpone the assignment of the actual values for p q p q, , ′, ′ and, in addition to the

conditions necessary for the application of Lemma 1, we also ask that q n p> 6 + ′ and
p q n′ > 2 ′ > 9 2.

In what follows, we prove that there exists a bijective relation f between the
maximum cuts of the input graphG and the maximum cuts of our permutation graphG′.
Then, we prove that, for each maximum cut X Y[ , ] of G,
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   E X Y k E A B ϕ n m k( , ) if and only if ( , ) ( , , ) ,G G′≥ ≥

where A B f X Y[ , ] = ( , ) and ϕ is a well‐defined function. Theorem 1 immediately follows.
Let A B[ , ] be a maximum cut ofG′. To define f , we first prove some properties relating

the partitioning of vertex and edge grained gadgets ofG′ in A B[ , ] with the partitioning of
the link vertices of G′ in A B[ , ]. More specifically, we prove that the two following
properties hold:

1. For each vertex v V G( )i ∈ , if K A″i ⊆ , then L L B{ , }i j i j,
1

,
2 ⊆ for each edge e E G( )j ∈ ,

with e v v=j i i′ and i i< ′;

2. For each edge e E G( )j ∈ , with e v v=j i i′ and i i< ′, if L L B{ , }i j i j,
1

,
2 ⊆ , then S A′j

e ⊆ . □

Proof of Property 1. Let v V G( )i ∈ and suppose that K A″i ⊆ . For the sake of
contradiction, suppose that there exists a link vertex L L v A( )i∈ ∩ . Then, let A B[ ′, ′]

be the cut obtained from A B[ , ] by setting A A L′ = { }⧹ and B B L′ = { }∪ . Observe that
there is a loss of at most    p q p+ max{ ′, ′} = + ′  edges between L and , and
between L and the vertices of the edge grained gadget related to L, say j , since K′j

e and
S′j

e are always in opposite parts of the cut. On the other hand we gain all the edges
between L and the vertices in K″i . Therefore, we get an increase of the cut‐set of at least q
edges, and a decrease of less than   p q n p+ max{ ′, ′} = 6 + ′ edges. It follows from the
hypothesis q n p> 6 + ′ that  EG A B′ ( ′, ′) is bigger than  E A B( , )G′ , contradicting the
maximality of A B[ , ]. □

Proof of Property 2. Consider an edge e E G( )j ∈ , with e v v=j i i′ and i i< ′, and suppose
that L L B{ , }i j i j,

1
,
2 ⊆ . Observe that, because the relative orders among the edge and vertex

grained gadgets themselves are the same inΠ andΠ′, there are no edges between j and any
other grained gadgets of G′. In other words, the only vertices outside of j that can be
adjacent to the vertices of j are those in . Moreover, Lemma 1 tells us that the vertices
belonging to K S′ ″j

e
j
e∪ are placed in the same part of A B[ , ], opposite to the part containing

the vertices belonging to K S″ ′j
e

j
e∪ . More formally, either K S B′ ″j

e
j
e∪ ⊆ and K S A″ ′j

e
j
e∪ ⊆ ,

or K S A′ ″j
e

j
e∪ ⊆ and K S B″ ′j

e
j
e∪ ⊆ . As a result, switching the vertices of j of part of the

cut does not change, and therefore cannot decrease, the number of edges between the
vertices of j and the vertices belonging to L e( )j⧹ in the cut‐set. Consequently, if S A′j

e ⊆ ,
then we obtain that there are at least p2 ′ edges in the cut‐set that are incident to vertices of j ;
these are the edges between L L,i j i j,

1
,
2 and the vertices belonging to S′j

e. On the other hand, if
S B′j

e ⊆ , then we obtain that there are at most q4 ′ edges in the cut‐set that are incident to
vertices of j ; these are the edges between the vertices belonging to L e( )j and the vertices
belonging to K′j

e. Therefore, since p q′ > 2 ′, we get that S A′j
e ⊆ as we wanted to prove. □

We are now ready to prove the existence of the bijective relation f . For each maximum cut
X Y[ , ] of G, let f X Y( , ) be the cut A B[ , ] of G′ defined as follows:

• For each vertex v V G( )i ∈ , if v Xi ∈ , then add K S L v′ ″ ( )i i i∪ ∪ to A and K S″ ′i i∪ to B; do
the opposite otherwise.
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• For each e E G( )j ∈ , with e v v=j i i′ and i i< ′, if L Ai j,
1 ∈ , then add K S′ ″j

e
j
e∪ to A and

K S″ ′j
e

j
e∪ to B; and do the opposite otherwise.

Based on Properties 1 and 2, one can readily verify that f is well‐defined and is a bijective
relation, as desired.

Now, we count the number of edges in E A B( , )G′ as a function of n,m, p, q, p′, q′ and of the
size of the cut‐set E X Y( , )G . First, consider v V G( )i ∈ . By construction, we know that there are
pq q2 + 2 edges in the cut‐set between the vertices of i . Additionally, there are exactly 6 link
vertices weakly intersecting i , while all other link vertices are either complete or anticomplete
to V ( )i . Observe also that the number of link vertices complete to V ( )i is exactly equal to
i6( − 1); these are the link vertices related to v v{ , …, }i1 −1 . This gives us a total of
q i p q6[ + ( − 1)( + )] edges between the vertices of i and the vertices belonging to  in the

cut‐set. Summing up these values for every v V G( )i ∈ , we get a total of

α n pq q q i p q n pq q q p q n= [2 + + 6 ] + 6 (( − 1)( + )) = [2 + + 6 + 3( + )( − 1)]
i

n

1
2

=1

2

edges in the cut‐set E A B( , )G′ incident to vertex grained gadgets. Now, let e E G( )j ∈ , with
e v v=j i i′ and i i< ′. By construction, we know that there are p q q2 ′ ′ + ( ′)2 edges of the cut‐set
between vertices of j , and p2 ′ edges of the cut‐set between L L,i j i j,

1
,
2 and the vertices of j .

Additionally, note that there are exactly m j4( − ) link vertices that cover and, therefore, are
complete to j ; these are the link vertices related to e e{ , …, }j m+1 . This gives us a total of
m j p q4( − )( ′ + ′) edges between the vertices of j and the vertices belonging to L e( )j⧹ .

Finally, suppose without loss of generality that L Ai j,
1 ∈ (the count is analogous if it is in B). If

v Xi′ ∈ , then we know that L L A{ , }i j i j′,
1

′,
2 ⊆ and hence there are no edges in the cut‐set between

vertices L L,i j i j′,
1

′,
2 and the vertices of j . Otherwise, observe that it follows that e E X Y( , )j G∈ and

L L B{ , }i j i j′,
1

′,
2 ⊆ , and hence we get additional q2 ′ edges in the cut‐set; these additional edges are

between the link vertices L L,i j i j′,
1

′,
2 and the vertices belonging to K′j

e. Summing up these values
for every e E G( )j ∈ , we get a total of  α q E X Y+ 2 ′ ( , )G2 edges in the cut‐set E A B( , )G′ incident
to edge grained gadgets, where

α m p q q p m j p q

m p q q p p q m

= [2 ′ ′ + ( ′) + 2 ′] + (4( − )( ′ + ′))

= [2 ′ ′ + ( ′) + 2 ′ + 2( ′ + ′)( − 1)].

j

m

2
2

=1

2

Finally, observe that there are at most    A B ∩ ⋅ ∩ edges of the cut‐set between link
vertices. Note also that    A X= 6∩ since each vertex in X is related to 6 link vertices, which
are all placed in A. Similarly, we have    B Y= 6∩ . This gives us at most    X Y n36 9 2⋅ ≤

edges in the cut‐set between link vertices. Putting everything together, we get:

     α α q E X Y E A B α α q E X Y n+ + 2 ′ ( , ) ( , ) + + 2 ′ ( , ) + 9 .G G G1 2 ′ 1 2
2≤ ≤

By setting ϕ n m k( , , ) to α α q k+ + 2 ′1 2 , and knowing that p q p q, , ′, ′ will be chosen
as functions of n and m, we want to prove, as stated in the beginning, that  E X Y k( , )G ≥ if and
only if  E A B ϕ n m k( , ) ( , , )G′ ≥ . If  E X Y k( , )G ≥ , then the first inequality gives us that
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 E A B α( , )G′ 1≥ α q k ϕ n m k+ + 2 ′ = ( , , )2 . On the other hand, if  E A B ϕ n m k( , ) ( , , ) =G′ ≥

α α q k+ + 2 ′1 2 , then the second inequality gives us that  E X Y k n q( , ) − 9 2 ′G
2≥ ∕ . Because we

assume that q n2 ′ > 9 2, it follows that k n q k− 9 2 ′ > − 12∕ and hence  E X Y k( , )G ≥ .
It only remains to set the values of p q p q, , ′, ′. Observe that:

• For every grained gadget H , the total number of vertices inV G H( ′)⧹ adjacent to H is at most
n6 (these are exactly the link vertices).

• For every vertex grained gadget H , the total number of vertices adjacent to some vertex
u S H′( )∈ is exactly q h+ 2 , for some positive integer h. This is because the number of link
vertices adjacent to the vertices in S H′( ) is always even. The same holds for the number of
vertices adjacent to the vertices in S H″( ). We then get that the parity of ℓ and r in the
conditions of Lemma 1 applied to H depends only on the parity of q.

• Similarly, if H is an edge grained gadget, then the parity of the total number of vertices
adjacent to some u S H S H′( ) ″( )∈ ∪ is equal to the parity of q′.

Therefore, the necessary conditions of Lemma 1 translate to: q n p q> 6 ( − 1)∕ and
q n p q′ > 6 ( ′ ′ − 1)∕ ; p n q> 6 + 2 and p n q′ > 6 + 2 ′; and q and q′ are odd.

Additionally, we need to ensure: q n p> 6 + ′ and p q n′ > 2 ′ > 9 2. Hence, consider:

• q n n′ {5 , 5 + 1}2 2∈ such that q′ is odd;
• p n n′ = 11 + 62 ;
• q n n= 12 + 12 + 12 ;
• p n n= 25 + 302 .

Since n 4≥ , one can verify that the values described above satisfy all the required conditions.
This, therefore, concludes the proof of Theorem 1.

5 | MAXCUT ON PERMUTATION INTERVAL GRAPHS IS
AN OPEN PROBLEM

In this paper, we have presented a proof of NP‐completeness for the MAXCUT problem when
constrained to permutation graphs. Surprisingly enough, we found that the main gadget in the
reduction recently presented by Adhikary et al. [1] for interval graphs is also a permutation
graph. Additionally, in Section 3, we have seen that being permutation is not a property that
holds for the full construction of Adhikary et al. [1]. On the other hand, since the grained
gadgets play an important role in our reduction too, one could wonder whether our
construction instead is in the intersection between interval and permutation graphs. The
answer to that is no as we argue next.

Let G be a cubic graph, and consider arbitrary orderings of V G( ) and E G( ), v v( , …, )n1 and
e e( , …, )m1 , respectively. Let j j j, ,1 2 3 be the indices of the edges incident to v1, with j j j< <1 2 3.
Also, let vi be the other endpoint of e j2. We present a C4 in G′, the graph constructed in
Section 4; it thus follows that G′ is not chordal, and hence also not interval [12]. Observe
Figure 7 to follow our argument. Let a be equal to L j1,

1
1
, b be any vertex in K″i , c be equal to Li j,

1
2
,

and d be any vertex in K ′j
e

1
. Since j j<1 2 and i1 < , we know that the relative order between a

and c in Π is the same as in Π′; hence ac E G( ′)∉ . Also, the relative order in Π between a and
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any vertex of i is reversed in Π′, the same holds between c and any vertex belonging to K″i ;
hence ab bc E G{ , } ( ′)⊆ . Similarly, the relative order between a and any vertex belonging to K ′j

e
1

in Π is reversed in Π′, and the same holds between c and any vertex of j1
 ; hence

ad cd E G{ , } ( ′)⊆ . Finally, since j j<1 2, the relative order between b and d inΠ is the same as in
Π′, and therefore bd E G( ′)∉ , thus finishing our argument.

The previous paragraph tells us that for any chosen orderings of V G( ) and E G( ), the
graph constructed in Section 4 contains a C4. Since it is known that the class of C4‐free
co‐comparability graphs is precisely the class of interval graphs [11], and that the class of
permutation graphs is equal to the class of comparability co‐comparability graphs [14], we get
that interval permutation graphs are exactly the class of C4‐free permutation graphs.

A good question is whether there is a construction that produces a permutation graph that
is also C4‐free (and hence interval). Up to our knowledge, the largest class in the intersection of
permutation and interval graphs for which the complexity is known is the class of the threshold
graphs. MAXCUT is polynomial‐time solvable on threshold graphs thanks to the algorithm given
for cographs, a subclass of permutation graphs that is a superclass of threshold graphs [2].
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