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Abstract. An r-graph is an r-regular graph G on an even number of
vertices where every odd set X ⊆ V (G) is connected by at least r edges
to its complement V (G) \ X. Every r-graph has a perfect matching
and in a poorly matchable r-graph every pair of perfect matchings
intersect, which implies that poorly matchable r-graphs are not r-edge-
colourable. We prove, for each fixed r ≥ 3, that poorly matchable r-
graph recognition is coNP-complete, an indication that, for each odd
d ≥ 3, it may be a hard problem to recognise d-regular (d − 1)-edge-
connected non-d-edge-colourable graphs, referred to as d-snarks in this
paper. We show how to construct, for every fixed odd d ≥ 5, an infinite
family of d-snarks. These families provide a natural extension to the
well-known Loupekine snarks. We also discuss how the hunting of the
smallest d-snarks may help in strengthening and better understanding
the major Overfull Conjecture on edge-colouring simple graphs.
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1. Introduction

Let r be a positive integer, an r-graph is an r-regular graph G on an even
number of vertices such that |∂G(S)| ≥ r for every odd -cardinality S ⊆ V (G) (we
refer the reader to Sect. 2 for technical definitions and further preliminaries).

Due to their relation with the celebrated Edmonds’s matching polytope the-
orem [1] and with important conjectures of Fulkerson and Tutte [2], r-graphs are
much studied in Combinatorics [2–6]. A well-known characterisation is that a
graph is an r-graph if and only if it can be expressed as a conic combination of the
indicator vectors of its 1-factors [2], which implies that every edge of an r-graph G
belongs to a 1-factor of G (see [2,5,7]). It was then conjectured by Seymour [2,4]
that, for every r ≥ 4, it would be possible to decompose every r-graph by express-
ing it as the sum of an (r− 1)-graph and a 1-factor. However, this conjecture was
proved false by Rizzi [5] two decades later, wherein he showed how to construct,
for every r ≥ 4, not only an indecomposable r-graph, but also, and “more surpris-
ingly”, a poorly matchable r-graph, i.e. an r-graph wherein every pair of 1-factors
intersect.

Concerning poorly matchable r-graphs, once conjectured not even to exist, we
prove that the problem of recognising if a given r-graph is poorly matchable is
coNP-complete for any fixed r ≥ 3.

Rizzi’s poorly matchable r-graphs are very large, with a number of vertices
which is exponential on r (namely, 2 · 5r−2 vertices for r ≥ 4, as it can be straight-
forwardly checked). Knowing now that recognising poorly matchable r-graphs is
a computational hard problem makes the task of finding these important graphs
even more challenging.

To the best of our knowledge, our complexity result is the first one from which
the following general complexity result can be derived: the problem of deciding if
any given graph has two disjoint perfect matchings is NP-complete.

In contrast, recall that deciding if any given graph has a perfect matching is a
problem which can be solved in polynomial time [8].

Let maxPDPM (G) be the maximum number of pairwise-disjoint perfect match-
ings (PDPMs) that a graph G has. When G is r-regular, the maximisation problem
of determining maxPDPM (G) can be viewed as a generalisation of the problem
of deciding if G is r-edge-colourable (i.e. has r PDPMs). Since the problem of
deciding if any given graph has two disjoint perfect matchings is NP-complete,
maxPDPM (G) is a hard parameter to compute and also to approximate, since
even deciding if maxPDPM (G) ≥ 2 is NP-hard. We note an interesting dichotomy,
since deciding if maxPDPM (G) ≥ 1 is polynomial [8].

In 1981, Holyer [9] proved that deciding if a graph G is ∆(G)-edge-colourable
is NP-complete even when restricted to cubic simple graphs. In 1983, Leven and
Galil [10] showed that the problem remains NP-complete when restricted to r-
regular simple graphs for every fixed r ≥ 3. We suspect the following.

Conjecture 1.1. For every fixed r ≥ 3, deciding if a given r-graph is r-edge-
colourable is an NP-complete problem, even when restricted to simple graphs.
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Conjecture 1.2. For every fixed d ≥ 3, deciding if a given d-regular (d − 1)-
edge-connected graph is d-edge-colourable is an NP-complete problem, even when
restricted to simple graphs.

When d is an odd integer, we refer to (d − 1)-edge-connected d-regular non-d-
edge-colourable simple graphs as d-snarks. The 3-snarks correspond to the snarks
(2-edge-connected non-3-edge-colourable cubic simple graphs1). Remark that, ac-
cording to our definition, every d-snark is a d-graph: if G is a d-snark which is not
a d-graph, then some odd-cardinality set X ⊆ V (G) induces a cut with exactly
d−1 edges; but then the degree sum of the vertices in G[X] would be d|X|−d−1,
an odd integer, since d is also odd, contradicting the Handshaking Lemma.

Other snark generalisations have already appeared in the literature in the con-
text of flow construction and others [13, 14], but they differ from ours, which
emerges from the context of the Overfull Conjecture, as discussed in Sect. 6. Non-
d-edge-colourable (d − 1)-edge-connected d-regular graphs are not an unexplored
subject either, as discussed in the sequel, in the subsection Further notes on re-
lated work concerning snarks and d-snarks. However, not much seems to be known
about these graphs, perhaps due to their rareness. An aim of this paper is to dis-
cuss their importance and to present an infinite family of d-snarks for every fixed
odd d ≥ 5 (the reason why our snark generalisation considers only odd values for
d shall also be clear in Sect. 6).

An important observation concerning Conjecture 1.2 is the following.

Observation 1.1. If Conjecture 1.2 holds, then, for any fixed odd integer d ≥ 3,
the d-snark recognition problem is coNP-complete. □

We remark that the edge-connectivity value on the definition of d-snarks seems
to be tight, since, according to a recent submitted paper by Ma et al. [15], it “sur-
prisingly seems” to be still an open question if there is any non-5-edge-colourable
5-edge-connected 5-regular graph (even though snarks are often assumed to be at
least 3-edge-connected [11, 12]). This makes the hunting for d-snarks with d ≥ 5
still more exciting, in addition to the fact that these graphs are unlikely to be
small. We also remark that the Conjecture 1.2 does not necessarily imply Conjec-
ture 1.1, since (r − 1)-edge-connected graphs are not necessarily r-graphs. This
subtle remark is the reason of the change of variables: to avoid confusion, when
dealing with r-graphs, we use the letter r; when dealing with (d−1)-edge-connected
graphs and d-snarks, we use the letter d.

This paper is organised as follows. In the remainder of this section, we make
a brief remark on some papers from the literature concerning snarks, other snark
generalisations, and non-d-edge-colourable d-regular graphs with high (edge-)con-
nectivity. In Sect. 2, we present preliminaries for the concepts appearing through-
out the text. In Sect. 3, we prove that the problem of recognising if a given r-graph
is poorly matchable is coNP-complete. In Sect. 4, we present the base gadget, with

1Sometimes in the literature, further restrictions are imposed on the definition of snarks, such
as having girth at least five and being cyclically 4-edge-connected (see e.g. [11, 12]). We do not
consider these restrictions, since our main interest on snarks and d-snarks are their role in the
major Overfull Conjecture in graph edge-colouring, as discussed in Sect. 6.
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which, in Sect. 5, we construct the infinite families of d-snarks. In Sect. 6, we
discuss the relation between d-snarks, the Overfull Conjecture, and the hardness
of edge-colouring. In Sect. 7, we conclude with further remarks.

Further notes on related work concerning snarks and d-snarks

Playing an important role on major graph problems for almost 150 years [16–18],
snarks were so called by the mid-1970s [19] after the mysterious creature hunted
in the poem The Hunting of the Snark, by Lewis Carroll, due to their rareness
and peculiar properties. The first known snark, and also the smallest one, is the
Petersen graph (Fig. 1A), dating from the 1890s [20,21]. Other snarks were found
only half a century later: the two 18-vertex Blanuša snarks [22] and the 210-vertex
Descartes snark [23]. The graph considered to be the fifth snark to be found is
Szekeres snark, from 1973 [24], with 50 vertices. The first infinite family of snarks,
the Flower snarks (Figs. 1B and 1C), was introduced by Isaacs in 1975 [11].

Also in 1973 (a few months earlier than Szekeres’s paper), Meredith [25] showed
a 3-vertex-connected non-3-edge-colourable cubic graph, therefore a snark. This
graph has also 50 vertices and it is not isomorphic to the Szekeres snark. Even so,
we have not found any mention in the literature on snarks referring to Meredith’s
graph as a snark, even less as the fifth to be found, possibly because this graph
has girth four. Snarks with girth at most four are called trivial, since, from a non-
trivial snark, infinitely many trivial snarks can be obtained (see e.g. [11, 12]). In
Isaacs’s paper [11] wherein the Flower snarks were introduced, he listed Petersen,
Blanuša, Descartes, and Szekeres’s graphs as the only five non-trivial snarks known
by that time.

(A) (B) (C)

Figure 1. (A) The Petersen graph; (B) J3 and (C) J5, the two
smallest of the Flower snarks.

Another important infinite family, originally defined by Loupekine and first
presented by Isaacs [26] in 1976, are the Loupekine snarks (Fig. 2), whose base block
was, in 1981, used as the base gadget in Holyer’s proof of the NP-completeness of
the edge-colouring problem [9].

In Meredith’s paper of 1973 [25], he presented a family of graphsGd, one for each
d ≥ 3, such that Gd is d-regular, d-vertex-connected (therefore d-edge-connected),
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(A) (B)

Figure 2. (A) A smallest Loupekine snark, with three base
blocks, one of them highlighted, and (B) a Loupekine snark with
five base blocks. A Loupekine snark can be constructed from a
cycle of any odd number of base blocks by: connecting each pair
of consecutive blocks in the cycle with either a parallel or a cross
link (a cross link is depicted in (B)); then gathering the upper
half-edges of the blocks either in groups of two, identifying both
half-edges of each group, or in groups of three, joining the half-
edges of each group to a new vertex.

and non-d-edge-colourable if and only if d ≡ 2, 3, 4 (mod 6). Meredith also presen-
ted another family G′

d, only for d ≡ 0, 1, 5 (mod 6), which are always non-d-edge-
colourable. However, the graph G′

d is d-vertex-connected only for d ≥ 11. One
can verify that λ(G′

5) = λ(G′
6) = λ(G′

7) = 4, which implies that, amongst all
non-d-edge-colourable graphs with odd d presented by Meredith, the graph G′

7 is
the only one which is not a d-snark. Fig. 3 depicts G′

5, a 5-snark with 90 vertices.
In fact, for every d ≥ 5, both the graphs Gd and G′

d (the latter when defined) have
20d− 10 vertices.

For d = 3, it is already known that the number of snarks on n vertices is at
least 2(n−84)/18 for sufficiently large even2 n [27]. Nevertheless, we can still regard
d-snarks as rare graphs. In fact, for any fixed d ≥ 3, the proportion of non-d-
edge-colourable d-regular graphs on 2k vertices (a superset of the d-snarks on 2k
vertices when d is odd) over all d-regular graphs on 2k vertices goes to 0 as k goes
to ∞ [28].

In 1999, Rizzi [5] showed how to construct, for every r ≥ 4, examples of r-
graphs that are poorly matchable (thus not r-edge-colourable). All these graphs
are 4-edge-connected and have a 4-edge cut, so only for r ≤ 5 they are (r − 1)-
edge-connected. Hence, Rizzi’s poorly matchable 5-graphs are examples of 5-
snarks. There are finitely many choices for Rizzi’s procedure to construct these
5-graphs from the Petersen graph, all of them having 250 vertices. Differently
from Meredith’s paper [25], from which we have a single d-snark for every odd

2Recall that, by the Handshaking Lemma, there cannot be a d-regular n-vertex graph with
both d and n odd.
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Figure 3. The graph G′
5, defined by Meredith [25], is to the best

of our knowledge the smallest known 5-snark.

d ≥ 5, d ̸= 7, and differently from Rizzi’s paper [5], from which we have finitely
many 5-snarks, we present in Sect. 5, for each fixed odd d ≥ 5, an infinite family
of d-snarks.

In the recent submitted paper by Ma et al. [15], the authors show that for
all even d > 2, there are d-regular d-edge-connected graphs with maxPDPM (G) ≤
d−3. These graphs, however, are not d-snarks according to our definition, because
d is not odd.

2. Definitions and technical preliminaries

We use the term graph3 to refer to an undirected loopless graph, which may be a
simple graph or a multigraph. The set of all edges between the same pair of vertices
in a multigraph is referred to as a multiple edge e, in contrast to the µe parallel
edges of which e consists. The set of vertices and the (multi)set of edges of a graph
G are denoted V (G) and E(G), respectively. The set of neighbours of a vertex u in

3Graph-theoretical definitions not present in this text follow their usual meanings (such as
in [29].).
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G and the (multi)set of edges incident with u in G are denoted NG(u) and ∂G(u),
respectively. For X ⊆ V (G), we define ∂G(X) := {uv ∈ E(G) :u ∈ X and v /∈ X},
referred to as the cut induced by X in G if ∅ ≠ X ̸= V (G). The degree of u in G
is dG(u) := |∂G(u)|. If dG(u) = d for all u ∈ V (G) and some integer d, then G is
said to be d-regular, in which case we say that d is the degree of G. The d-regular
complete bipartite graph is denoted Kd,d. The maximum (minimum) degree of G
is denoted ∆(G) (δ(G)). A cubic graph is a 3-regular graph. A subcubic graph is
a (not necessarily regular) graph G with ∆(G) ≤ 3. When free of ambiguity, we
may omit G from the notation, writing simply d(u), ∂(X), ∆ etc.

We say that a graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). If ∆(H) = ∆(G), then H is said to be a ∆-subgraph of G. If
V (H) = V (G), then H is said to be a spanning subgraph of G. Let U ⊆ V (G)
and F ⊆ E(G), the subgraph of G induced by U , denoted G[U ], and the subgraph
of G induced by F , denoted G[F ], are the graphs defined by:

V (G[U ]) := U and E(G[U ]) := {uv ∈ E(G) : u, v ∈ U} ;
E(G[F ]) := F and V (G[F ]) := {u ∈ V (G) : uv ∈ F for some v ∈ V (G)} .

Let u ∈ V (G) and e ∈ E(G), we define G − u := G[V (G) \ {u}] and G − e :=
G[E(G) \ {e}]. Analogously we define G − U for U ⊆ V (G), and G − F for
F ⊆ E(G).

An r-factor of G is a (not necessarily induced) subgraph H of G which is r-
regular and spanning. A set M ⊆ E(G) is said to be a matching if it induces
a 1-regular subgraph of G. A perfect matching is the edge set of a 1-factor, but
often these terms are used as synonyms, by abuse.

The multiplicity of an edge e of a graph G is denoted µG(e), being µ(uv)G := 0
for all u, v ∈ V (G) such that uv /∈ E(G). The sum G1 + G2 of two graphs G1

and G2 on the same vertex set V is the graph on V such that µG1+G2
(uv) =

µG1(uv) + µG2(uv) for all u, v ∈ V . Let F := E(G2), the graph G1 + G2 is also
denoted G1 + F . If G is an r-graph and M is a 1-factor of the complete graph
on V (G), then clearly G+M is an (r + 1)-graph, since for every odd-cardinality
S ⊆ V (G) we have M ∩ ∂G(S) ̸= ∅ and thus |∂G+M (S)| > |∂G(S)|.

A connected graph G is said to be k-edge-connected, being k ∈ Z>0, if |V (G)| >
1 and G−F is connected for all F ⊆ E(G) such that |F | < k. Similarly, G is said
to be k-vertex-connected, being k ∈ Z>0, if |V (G)| > k and G−U is connected for
all U ⊆ V (G) such that |U | < k. The greatest k for which G is k-edge-connected
(k-vertex-connected) is the edge-connectivity (vertex-connectivity) of G, denoted
λ(G) (κ(G)). Clearly, δ(G) ≥ λ(G) ≥ κ(G).

Petersen’s Theorem states that every 2-edge-connected cubic graph has a perfect
matching [30]. In fact, for any (odd or even) d ≥ 3, every (d− 1)-edge-connected
d-regular graph on an even number of vertices (and, thus, every d-snark) has a
perfect matching, and any of its edges belongs to a perfect matching [31]. In the
case of 2-edge-connected cubic graphs, it has already been proved that the number
of perfect matchings is bounded below by an exponential on n [32].
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A k-edge-colouring of a graph G is a function φ : E(G) → C such that C is a
set of k colours and φ(e) ̸= φ(f) for all distinct adjacent e, f ∈ E(G). We also
define φ(F ) :=

⋃
e∈F {φ(e)} for any F ⊆ E(G) (including the case wherein F is

a multiple edge). The chromatic index of G, denoted χ′(G), is the least k for
which G is k-edge-colourable. By Vizing’s Theorem [33], if G is simple, then χ′(G)
is either ∆(G) or ∆(G) + 1, being G said to be Class 1 in the former case, and
Class 2 in the latter. A critical graph is a connected Class 2 simple graph G such
that χ′(G − e) < χ′(G) for every e ∈ E(G). Seymour’s r-graph conjecture [2],
proved for r ≤ 11 [34], is the statement that χ′(G) ≤ ∆(G) + 1 also for every (not
necessarily simple) r-graph G.

Deciding if a graph is ∆-edge-colourable is an NP-complete problem [9], even
when restricted to d-regular simple graphs for any constant d ≥ 3 [10], to per-
fect graphs [35], or to Ck-free simple graphs for any constant k ≥ 3 [35, 36]. An
O(2mmO(1))-time exact algorithm for edge-colouring graphs with m edges is yiel-
ded by the set partition algorithm by Björklund et al. [37].

In an edge-colouring φ : E(G) → C , a colour α ∈ C is said to be missing
at some u ∈ V (G) if no edge at u is coloured α. The edge-colouring φ is said
to be equitable if, for all α, β ∈ C , the number of edges coloured α differs from
the number of edges coloured β by at most one. It is a well-known interesting
property of edge-colouring that every graph G has an equitable k-edge-colouring
for any integer k ≥ χ′(G) [38].

Another interesting edge-colouring property is the Parity Lemma, which ap-
pears in the construction of the Blanuša, the Descartes, and the Flower snarks [11].
The Parity Lemma states that if φ is a d-edge-colouring of a d-regular graph G
with d ≥ 2, then, for any cut F in G, the number of edges in F coloured α has
the same parity for any α ∈ C .

A graph G on n vertices is said to be overfull if it has more than ∆⌊n/2⌋ edges,
or, equivalently [39], if n is odd and

∑
u∈V (G)(∆−d(u)) ≤ ∆−2. A graph G is said

to be subgraph-overfull (shortly, SO) if it has an overfull ∆-subgraph. Deciding if
a graph is SO can be done in polynomial time [39–41]. In an edge-colouring, we
need at least ∆+ 1 colours to colour more than ∆⌊n/2⌋ edges. Therefore, being
SO is clearly a sufficient condition for a simple graph to be Class 2 . There has
been much work (e.g. [42–48]) aimed at identifying graph classes wherein being
SO is also a necessary condition to be Class 2 . The Overfull Conjecture states
that this necessity holds for all n-vertex simple graphs with ∆ > n/3 [42, 49, 50].
This conjecture has already been settled for some specific graph classes, such as
graphs with ∆ ≥ n − 3 [51, 52], complete multipartite graphs [43], powers of
cycle graphs [53], regular join graphs [44], split-interval graphs [54, 55], and split-
comparability graphs [55].

Restricted to d-regular simple graphs with d ≥ n/2, the Overfull Conjecture is
also known as the 1-Factorisation Conjecture, being equivalent to the statement
that every d-regular simple graph of even order n ≤ 2d is 1-factorisable (or, equival-
ently, Class 1 and regular) [56]. The 1-Factorisation Conjecture was demonstrated
to hold asymptotically, i.e. for any ϵ > 0, there is an n0 such that every d-regular
graph on n vertices with even n ≥ n0 and d ≥ (1/2 + ϵ)n is 1-factorisable [57].
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Let EDGE-COLOURING and 2-PDPM be the problems of deciding if a given
graph G satisfies χ′(G) = ∆(G) and maxPDPM (G) ≥ 2, respectively. Let A be
any decision problem and r a predicate over the instances of A, the restriction of
A to the instances which satisfy r is denoted A(r).

3. 2-PDPM(r-graph) is NP-complete for every fixed r ≥ 3

Holyer’s [9] proof of the NP-completeness of EDGE-COLOURING(cubic, simple)
consists of a reduction from 3SAT which, given a 3SAT instance Φ, constructs a
cubic simple graph G which is 3-edge-colourable if and only if Φ is satisfiable. A
3SAT instance Φ consists of a set of variables, and a set of clauses such that each
clause is a disjunction of three literals (the variable itself or the negation of the
variable). We start this section by briefly presenting Holyer’s reduction so that
the following can be verified by inspection. The constructed graph corresponding
to a 3SAT instance consists of components called gadgets which carry out specific
tasks. Information is carried between gadgets by half-edges that contain just one
end vertex in the gadget.

Lemma 3.1. For any 3SAT instance Φ, the graph constructed by Holyer’s reduc-
tion is a 3-graph. □

We remark that, for the inspection, it suffices to verify that the structure of G
is the same regardless of the satisfiability of Φ (this is expected, since otherwise
the reduction would be solving 3SAT). If this holds, G cannot have a bridge,
otherwise, from the Parity Lemma, it would always be non-3-edge-colourable, even
when Φ is satisfiable. Also, no cubic simple graph can have a 2-cut induced by
an odd-cardinality vertex set, since this cut would allow us to construct a cubic
(not necessarily simple) graph on an odd number of vertices, contradicting the
well-known Handshaking Lemma. Therefore, G must be a 3-graph.

The base gadget in Holyer’s reduction is the inverting gadget (Fig. 4), which
had been previously used as the base blocks in the construction of the Loupekine
snarks [26]. The main feature, which explains the name inverting, of this gadget
is transcribed in Lemma 3.2.

(A) a

b f

g

c

o
m

h

i ℓ

n

j k

(B)

Figure 4. (A) the inverting gadget; (B) the representation of
the inverting gadget.

Lemma 3.2 ([9]). Holyer’s inverting gadget (Fig. 4) is 3-edge-colourable and, for
any copy H of this gadget in a cubic graph G and any 3-edge-colouring φ of G,
all the following hold:
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(i) each of the three colours appears either once or three times at the five
half-edges ( a, b, c, f, g) of H;

(ii) either φ(a) = φ(b), or φ(f) = φ(g).

Moreover, any 3-edge-colouring of the half-edges satisfying (i) and (ii) can be
extended to a 3-edge-colouring of H. □

In view of Lemma 3.2, a pair of half-edges (e1, e2) of a copy of the inverting
gadget in a cubic graph G, under a 3-edge-colouring of G, is said to be true if
φ(e1) = φ(e2), and false otherwise. From Lemma 3.2, if (a, b) ((f, g)) is true, then
any pair chosen from {c, f, g} ({a, b, c}) is false.

Let Φ be a 3SAT instance wherein each variable is assumed, without loss of
generality, to occur at least twice. With the inverting gadget, a copy of the variable
gadget (Fig. 5A and 5B) is constructed for each variable x of Φ, with as many
outputs as the occurrences of x in Φ. In a copy of the variable gadget in a 3-edge-
coloured cubic graph, the outputs have all the same truth value [9]. Conversely, any
assignment of 3 colours to the outputs of a variable gadget X in which the outputs
have all the same truth value can be extended to a 3-edge-colouring of X [9]. For
each occurrence of a variable as a negated literal in a clause, an extra inverting
gadget is attached to the corresponding output, as in Fig. 5B. To complete the
reduction, a copy of the clause gadget (Fig. 5C) is constructed for each clause
of Φ, identifying each of its three inputs with the corresponding outputs of the
variable gadgets, according to the literals of the clause. In a copy of the clause
gadget in a 3-edge-coloured cubic graph, at least one of the inputs must be true [9].
Conversely, any assignment of three colours to the inputs of the clause gadget Ξ
in which at least one of the inputs is true can be extended to a 3-edge-colouring of
Ξ [9]. Hence, the graph G constructed is 3-edge-colourable if and only if all clauses
of Φ are satisfiable. Remark that G has some loose half-edges, which are handled
by duplicating G and identifying each corresponding pair of loose half-edges.

Our proof for the NP-completeness of 2-PDPM(r-graph) for every fixed r ≥ 3
combines Holyer’s reduction with Rizzi’s [5] construction of poorly matchable r-
graphs for every fixed r ≥ 4. So, now we briefly describe Rizzi’s construction.

Let r ∈ Z≥4 and let P(r) be the r-graph obtained from the Petersen graph P
by adding r − 3 copies of a 1-factor M of P (Fig. 6A). Let zx ∈ M and let a, b
be the neighbours of z in P other than x. By the symmetry of P, all choices for
M, zx, a, b are equivalent under automorphisms. Let ⟨a, x, b⟩(r) be the component
obtained by removing z from P(r) and leaving the r half-edges incident with a, x, b
to be linked to r (not necessarily distinct) vertices in the construction of a larger
r-graph (Fig. 6B).

Now comes what we call Rizzi’s r-step. Let G(r−1) be an (r − 1)-graph with
r ≥ 4, let M be a 1-factor of G(r−1) and let U be a minimum vertex cover of M
(thus |U | = |M |). Then, adding a copy M ′ of M to G(r−1), we obtain an r-graph
H. For each pair of parallel edges e ∈ M and e′ ∈ M ′, let u be the endvertex
of e in U and apply the P(r)-splicing operation on (u, e, e′), i.e. replace u with a
copy of ⟨a, x, b⟩(r) attaching e to a, e′ to b, and all other edges incident with u
in H to x (see Fig. 7). Let G(r) be the r-graph obtained after this operation is
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(A)

#

#

(B)

#

#
#

#
#

(C)

#

#

#
#

#

#

#

Figure 5. The variable gadget for a variable x with (A) two
outputs and (B) four outputs, and (C) the clause gadget. In (B),
an extra inverting gadget is attached to one of the outputs for
an occurrence of x as a negated literal in a clause of Φ. The
(half-)edges marked # in (A)–(C) are edges with multiplicity r−2
in Leven and Galil’s reduction for r-regular graphs, as discussed
in Sect. 4.

(A)

x

b

z
a

(B)

x

b

a

(C) x ba

Figure 6. (A) the graph P(5); (B) the ⟨a, x, b⟩(5) component;
(C) the representation of the component.

performed for every e ∈ M . Clearly, |V (G(r))| = 5|V (G(r−1))|, since for each of
the |V (G(r−1))|/2 in U , the P(r)-splicing operation creates 8 new vertices, so

|V (G(r))| = |V (G(r−1))|+ 8|V (G(r−1))|
2

= 5|V (G(r−1))| .
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Rizzi [5] proved that if G(r−1) is poorly matchable, then so is G(r). Actually, the
converse also holds, as we observe in Lemma 3.3.

(A) (B) ∗

∗

(C)

Figure 7. (A) K4, which is a 3-graph, but not poorly matchable;
(B) K4 after adding a 1-factor, with the vertex cover indicated by
∗; (C) graph G(4) obtained by Rizzi’s 4-step on G(3) := K4.

Lemma 3.3. Let r ∈ Z≥4. The r-graph G(r) obtained from an (r − 1)-graph
G(r−1) by applying Rizzi’s r-step is poorly matchable if and only if G(r−1) is
poorly matchable.

Proof. Since the necessity is by Rizzi [5], we prove only the sufficiency. Suppose
that G(r−1) has two disjoint perfect matchings M1,M2. Clearly, M1,M2 are still
disjoint matchings of G(r), and we show how to extend each of them by adding
edges inside the ⟨a, x, b⟩(r) components, so that all vertices of G(r) are covered.

Let u be a vertex of G(r−1) on which a P(r)-splicing operation was performed
in the construction of G(r) and consider the corresponding ⟨a, x, b⟩(r) component.
It is important that the edge set selected in the component for M1 is disjoint from
the edge set selected for M2. Let e ∈M1 and f ∈M2 be the edges incident with u
in G(r−1). By the construction of G(r), at least one of e, f must be incident with
x in G(r), since the edge incident with b in G(r) was not present in G(r−1). We
have two cases.

• Both e and f are incident with x in G(r). In this case, we extend M1 and
M2 by selecting, from each set of parallel edges in the component (edge of
multiplicity greater than one, see Fig. 8A), one edge for M1 and other for
M2.

• Exactly one of e, f (say e w.l.g.) is incident with a in G(r). In this case,
since f is incident with x, we extend M2 also by selecting one edge from
each set of parallel edges in the component. To extend M1, we select the
edges indicated in Fig. 8B. Observe that all these edges have multiplicity
one in the component, except for edge y1y2, from whose set of parallel
edges one edge is selected for M1 and other for M2.

The new matchings obtained are still disjoint and now each covers all vertices
in the component. □

Now we are ready to prove that 2-PDPM(r-graph) is NP-complete for every
fixed r ≥ 3.

Theorem 3.1. Let r be any fixed integer not smaller than 3. The problem of
deciding if a given r-graph has two disjoint perfect matchings is NP-complete.
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(A)

x

b

a

(B)

xy1

y2

b

a

Figure 8. (A) a way (bold) to extend a matching in G(r−1)

containing an edge incident with x; (B) a way (bold) to extend a
matching in G(r−1) containing an edge incident with a.

Equivalently, the problem of recognising if a given r-graph is poorly matchable is
coNP-complete.

Proof. We already have that 2-PDPM(3-graph) is NP-complete by Lemma 3.1,
since every non-3-edge-colourable cubic graph is poorly matchable. Assume then
r ≥ 4 and, by induction, that 2-PDPM((r − 1)-graph) is NP-complete. By Lemma 3.3,
Rizzi’s r-step constructs, from any (r−1)-graph G(r−1), an r-graph G(r) such that
maxPDPM (G(r)) ≥ 2 if and only if maxPDPM (G(r−1)) ≥ 2. Hence, we have a re-
duction from 2-PDPM((r − 1)-graph) to 2-PDPM(r-graph) which can be clearly
performed in polynomial time, since it consists only of duplicating a 1-factor of
G(r−1) and P(r)-splicing half of its vertices. □

For a fixed r ≥ 4, when we compose all the reduction chain of the proof of
Theorem 3.1 and apply it on a 3SAT instance Φ, we obtain an r-graph whose
number of vertices has a factor which is exponential on r. However, this is not a
problem, since r is being regarded as a fixed constant.

From Theorem 3.1 follows the more general result below.

Corollary 3.1. The problem of deciding if any given graph has two disjoint perfect
matchings is NP-complete. □

4. The base gadget

Leven and Galil [10] extended Holyer’s reduction to produce, for any fixed
constant d ≥ 3, a d-regular graph which is Class 1 if and only if a given 3SAT
instance Φ is satisfiable, thus proving that EDGE-COLOURING(d-regular, simple)
is NP-complete. It can be easily verified that the whole graph output by Holyer’s
reduction is always bridgeless. That is, the problem shown NP-complete by Holyer
is the problem of deciding if a 2-edge-connected cubic graph is 3-edge-colourable
or a snark. Hence, the snark recognition problem is coNP-complete.

In Leven and Galil’s proof for d-regular graphs, Holyer’s inverting gadget was
extended by adding multiplicities to the edges of Holyer’s original gadget. The
way that these multiplicities are added to the edges is defined as in Fig. 9B for
any p satisfying 1 ≤ p ≤ d − 2. In Leven and Galil’s proof, the (d − 1)-edge-
connectedness of the graph output by the reduction is not guaranteed. We do
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Table 1. The multiplicity of each edge of our inverting gadget,
following Fig. 9A.

For d ≡ 1 (mod 4) For d ≡ 3 (mod 4)

µa = µg = µm = µn (d+ 3)/4 (d+ 1)/4
µb = µf = µi = µℓ (d− 1)/4 (d+ 1)/4

µc 1 1
µh (d+ 1)/2 (d− 1)/2

µj = µk (d− 1)/2 (d− 1)/2
µo (d− 3)/2 (d− 1)/2

not have (d − 1)-connectedness even inside the inverting gadget when d > 5 (for
instance, see the cut induced by the endvertices of edge h).

(A)

a

b f

g

c

o
m

h

i ℓ

n

j k

(B)

(p)

(1) (1)

(d−p−1)

(1)

(1)
(d−p−1)

(d−2)

(1) (1)

(p)

(d−p−1) (p)

Figure 9. (A) Holyer’s original inverting gadget for cubic graphs
and (B) Leven and Galil’s extension to d-regular graphs for d ≥ 3
and for 1 ≤ p ≤ d − 2. In (B), the multiplicities are shown in
parentheses.

The construction of our base gadget is presented throughout the remainder of
this section, in which we show how to modify Leven and Galil’s gadget for any odd
d ≥ 5, so that the graphs constructed in Sect. 5 are always (d−1)-edge-connected.

Our inverting gadget is also obtained from Holyer’s by adding multiplicities to
the edges. As in Leven and Galil’s proof, to guarantee that no multiple edges
occur, each edge uv in a set of parallel edges is replaced with a copy of the gadget
obtained from Kd,d−xy, for any choice of xy, by joining x to u and joining y to v
with edges. This works because every bipartite graph is Class 1 [58] and, in any
d-edge-colouring of Kd,d − xy, the colours missing at x and y must be the same,
since subdividing xy in Kd,d yields an overfull graph.

We define, for any fixed odd d ≥ 5, an inverting gadget which depends solely
on d, rather than defining a distinct gadget for each p ∈ {1, . . . , d − 2}. The
multiplicities µe chosen for each edge e are defined in Table 1. We call our inverting
gadget H.

The multiplicities of the edges of our inverting gadget are chosen so that, in
addition to the identities in the first column of Table 1, we have Lemma 4.1, which
follows by inspection on Table 1.
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Lemma 4.1. For any odd integer d ≥ 5, let H be the inverting gadget with the
multiplicities as in Table 1. Then, we have the following:

(i) each vertex has degree d and, as in Leven and Galil’s inverting gadget,
there are d+ 2 half-edges in total,

(ii) the cut induced by any non-empty set of vertices in the gadget has at least
d− 1 edges. □

In Theorem 4.1, we show the properties that d-edge-colourings of our inverting
gadget H must have, which explains the name inverting, when considering a d-
edge-colouring of a d-regular graph containing a copy of H.

Theorem 4.1. For any odd integer d ≥ 5, let H be the inverting gadget with
the multiplicities as in Table 1. Then, H is d-edge-colourable and, in any d-edge-
colouring of a d-regular graph containing a copy of H, and

(†) each of d−1 colours appears exactly once at the d+2 half-edges of each H,
whilst the other colour α appears exactly three times.

Also,
(i) either α appears at a and b,
(ii) or α appears at f and g.

Moreover, any d-edge-colouring of the half-edges satisfying (†) and either (i) or
(ii) can be extended to a d-edge-colouring of H.

Proof. Our strategy for the proof is as follows: first we prove that, if H is d-
edge-colourable, then property † is satisfied for any d-edge-colouring of a d-regular
graph G containing a copy of H; second we prove that any d-edge-colouring of the
half-edges of H satisfying property † and either (i) or (ii) can be extended to a
d-edge-colouring of H.

First, we show that, if H is d-edge-colourable, then (†) is satisfied for any d-
edge-colouring φ : E(G) → C of a d-regular graph G containing a copy of H. Let
P be the set of the half-edges of H. By the Parity Lemma, if there are some
colours in C not appearing at any edge in P , then all colours in C must appear
an even number of times at the d+ 2 edges in P , which is not possible, since d is
odd. Again by the Parity Lemma, as every colour appears at least once at edges in
P , then some α ∈ C appears exactly three times, whilst each of the other colours
appears exactly once.

Now, we show that any d-edge-colouring of P satisfying (†) and either (i) or (ii)
can be extended to a d-edge-colouring of H. For (i), we know that α appears at
one amongst c, f, g, and the edge-colourings for these three cases are presented in
Fig. 10. For (ii), the edge-colourings are symmetric to the ones presented for (i).

It remains to show that any d-edge-colouring of H satisfying (†) satisfies either
(i) or (ii). For the sake of contradiction, assume that neither (i) nor (ii) holds.
Then, one amongst Cases 1–3 does.

Case 1. Colour α appears at b, c, and f .

Since α cannot be missing at any vertex and it cannot appear at any amongst
a, g, h, i, j, k, ℓ, it must appear at both m and n. Since φ(a) and φ(g) are disjoint,
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(A)

αA

αB F

G

α

B F
G

AG

F αB

αA

BG AF

(B)

αA

αB αF

G

β

β B F
G

AG

β F β B

αA

BG αAF

(C)

αA

αB F

αG

β

B F
β G

β AG

F αB

β A

αBG AF

Figure 10. The ‘Moreover ’ part of Theorem 4.1. Here, we show
the colours at each edge of H from a d-edge-colouring of the half-
edges satisfying (†) and (i), with colour α appearing at edges a and
b and: (A) c; (B) f ; (C) g. In (B) and (C), let β := φ(c). In each of
the three cases, A,B, F,G are any disjoint colour sets containing
neither α nor β such that, for e ∈ {a, b, f, g}, the set identified by
the corresponding capital letter has cardinality µe−|{α, β}∩φ(e)|.
By inspection on Table 1, one can verify that the edge-colourings
use only d colours and each edge has exactly as many colours as
its multiplicity.

every colour at a (g) must appear at n (m). Therefore, we have at least µa + 1
(µg + 1) colours at n (m), a contradiction, since µa = µn = µg = µm.

Case 2. Colour α appears at b, c, and g (at a, c, and f).

In this case, α cannot appear at any amongst i, j, n (at any amongst k, ℓ,m), a
contradiction.

Case 3. Colour α appears at a, c, and g.

Analogously to Case 1. Since α cannot be missing at any vertex and it cannot
appear at any amongst b, f, o, j, k, n,m, it must appear at both i and ℓ. However,
any colour appearing at b (f) must also appear at ℓ (i), a contradiction, since
µb = µℓ = µf = µi. □

With Theorem 4.1, now we can explain why the base gadget is referred to as
inverting. Let H be a copy of our inverting gadget in a d-regular graph G, and let
φ be a d-edge-colouring of H. A pair of half-edges (e1, e2) of H, under φ, is said
to be true if |φ(e1)∩φ(e2)| = 1, and false if φ(e1)∩φ(e2) = ∅. From Theorem 4.1,
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if φ is part of a d-edge-colouring of G, we have that if (a, b) is true, then any pair
chosen from {c, f, g} is false. Else, if (a, b) is false, then (f, g) is true, which in turn
implies that any pair chosen from {a, b, c} is false. A d-edge-colouring ψ of a pair
of half-edges (e1, e2) of H is said to be consistent for (e1, e2) if |ψ(e1)∩ψ(e2)| ≤ 1,
i.e. if (e1, e2) is either true or false. Again by Theorem 4.1, if ψ is part of a d-
edge-colouring of G, then it is consistent for any pair chosen from the half-edges
of H. In Fig. 11, we introduce the representation of the inverting gadget in the
construction of our infinite families of d-snarks in Sect. 5.

(A) a g

b f
c

(B)

Figure 11. (A) The inverting gadget, having the multiplicities
of the (half-)edges as defined in Table 1; (B) the representation
of the inverting gadget.

5. An infinite family of d-snarks for each odd d

A feature of our inverting gadget (recall Fig. 9A and Table 1) is that, differently
from Leven and Galil’s (Fig. 9B), the multiplicities of half-edges a and b are the
same as the multiplicities of half-edges g and f , respectively. This symmetry is
the key which allows us to extend the construction of the infinite family L of the
Loupekine snarks (recall Fig. 2) to the construction of an infinite family Ld of
d-snarks for any fixed odd d ≥ 5. The graphs of Ld are the d-snarks obtained by
the following procedure, illustrated in Fig. 12:

1. Take an odd integer r ≥ d and any integer solution (x, y) of the equation
2x+ dy = r. Observe that y must be odd.

2. Let H be our inverting gadget for d, take r copies of H, to which we refer
as the base blocks of the d-snark under construction.

3. Arrange the r base blocks in a cycle, connecting each pair of consecutive
blocks either with a parallel (i.e. half-edge f (g) of a block is identified
with half-edge b (a) of the other) or a cross (i.e. half-edge f (g) of a block
is identified with half-edge a (b) of the other) link. Remark that cross links
are possible only when d ≡ 3 (mod 4), otherwise, by Table 1, we do not
have µa = µf .

4. Gather the upper half-edges c of the blocks either in groups of two, identi-
fying both half-edges of each group, or in groups of d, joining the half-edges
of each group to a new joining vertex, being x the amount of groups of
two half-edges, and y the amount of groups of three. Observe that there
are many ways of grouping these edges.
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(A) (B)

Figure 12. (A) The smallest graph of L5; (B) a graph of L7 with
nine base blocks and a cross link. Cross links are not possible for
graphs of L5.

Theorem 5.1. Let d, r, t be fixed odd integers with r ≥ d ≥ 5 and 1 ≤ t ≤ ⌊r/d⌋.
Let G be a graph of Ld built on r base blocks and t joining vertices. Then, G is
a d-snark and the number of vertices of G is:

• 137r + t if d = 5;
• (7(d2 + 1)− d)r + t if d ≥ 7.

Proof. First assume, for the sake of contradiction, that G is d-edge-colourable.
Then, by Section 4, each link connecting two consecutive base blocks in the cycle
is either true or false. Moreover, no matter how the base blocks are coloured, even
though the coloured assigned to a base block may affect the coloured assigned to
other base block, the truth values appear along the cycle alternately, since each
base block is an inverting gadget. However, the number of base blocks is odd, so
G must be a d-snark.

Now we count the number of vertices of G. Let H be the inverting gadget
with multiplicities as defined in Table 1. The vertices in H are the seven vertices
displayed in Fig. 9A, plus the 2d vertices of each copy of Kd,d used in the middle
of an edge for each set of at least two parallel edges. Since, in G, a pair (f, g) of
a base block is the pair (a, b) of the next base block in the cycle, we shall count
only the copies of Kd,d for half-edges a and b, avoiding counting them twice in the
whole graph G. Recall that half-edge c has multiplicity one.

If d = 5, the (half-)edges of H with multiplicity greater than one, disregarding
f and g, are a, h, j, k,m, n. Since the sum of the multiplicities of these edges is
13, we count, for each of the r base blocks of G, the seven vertices displayed in
Fig. 9A plus the 13(2d) = 130 vertices for the 13 copies of Kd,d. Counting also
the t joining vertices, we have that the number of vertices of G is 137r + t in this
case.

If d ≥ 7, then all the (half-)edges a, b, h, i, j, k, ℓ,m, n, o have multiplicity greater
than one, and the sum of the multiplicities of these edges is, from Table 1, equal
to (7d− 1)/2 for both cases d ≡ 1 (mod 4) and d ≡ 3 (mod 4). Hence, for each of
the r base blocks of G, we count the seven vertices displayed in Fig. 9A plus the
(2d)(7d− 1)/2 = 7d2− d vertices for the (7d− 1)/2 copies of Kd,d, yielding a total
of 7d2 − d+ 7 = 7(d2 + 1)− d vertices per base block. Therefore, in this case, the
number of vertices of G is (7(d2 + 1)− d)r + t. □

Corollary 5.1. Let d ≥ 5 be a fixed odd integer. The number of vertices of a
smallest d-snark of Ld is: 686 if d = 5; 7(d3 + d)− d2 + 1 if d ≥ 7.
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Proof. Follows from Theorem 5.1 considering a d-snark of Ld built on d base blocks
(and thus one joining vertex, since d is odd). □

6. On d-snarks and the hardness of edge-colouring

Our discussion on d-snarks and the Overfull Conjecture starts with a useful
characterisation of regular SO graphs of odd degree. We recall that a graph G on n
vertices is said to be overfull if it has more than ∆⌊n/2⌋ edges, or, equivalently [39],
if n is odd and

∑
u∈V (G)(∆ − d(u)) ≤ ∆ − 2. A graph G is said to be subgraph-

overfull (shortly, SO) if it has an overfull ∆-subgraph.

Lemma 6.1. Let d ≥ 3 be a positive integer, a d-regular graph G on n vertices
is SO if and only if n is odd or G has a cut with at most d− 2 edges induced by
some U ⊆ V (G) with odd |U | and ∆(G[U ]) = d.

Proof. Every regular graph G of odd order is overfull, thus SO, since it has∑
u∈V (G)(∆(G) − dG(u)) = 0. On the other hand, if G is a regular graph of

even order, then, since G cannot be overfull itself, it is SO if and only if it has a
proper ∆-subgraph H which is overfull, which holds if and only if |V (H)| is odd
and ∑

u∈V (H)

(∆− dH(u)) = |∂G(V (H))| ≤ ∆− 2 . □

Theorem 6.1 brings that d-snarks are Class 2 graphs which are not SO, as it is
known for snarks [49].

Theorem 6.1. No d-snark can be SO.

Proof. A d-snark is a d-regular graph with odd d and so with an even number of
vertices. By Lemma 6.1, a d-snark to be SO must have a cut with at most d− 2
edges, which contradicts the (d− 1)-edge-connectivity of d-snarks. □

Theorem 6.1 brings a reason why we do not define d-snarks for even d. If
we defined d-snarks for even d, then we would have d-snarks with odd order
(e.g. Kd+1), being all overfull, but we are interested on hunting non-SO Class 2
graphs, to better understand the limits of the Overfull Conjecture, as discussed in
the sequel.

The following is another snark property which is extended to d-snarks.

Theorem 6.2. Let G be a d-snark and u be any vertex of G. Then, G − u is
also a non-SO Class 2 graph.

Proof. Let G be a d-snark on n vertices. Recall that n must be even by the
Handshaking Lemma. Also, notice that a d-snark G cannot have universal vertices;
otherwise, it would be a spanning subgraph of Kd+1, which is Class 1 because d
is odd. Thus, G − u is a non-regular graph with ∆(G − u) = d. We assume,
for the sake of contradiction, that there is some u ∈ V (G) such that G − u has
a d-edge-colouring. Recall that every graph G has an equitable k-edge-colouring
for any integer k ≥ χ′(G) [38]. Since in any equitable d-edge-colouring of G − u,
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each of the d colours must be assigned to the same number of (n − 2)/2 edges,
implying that each colour is missing at exactly one neighbour of u in G, yielding
the construction of a d-edge-colouring of G. □

Let P ∗ be the graph obtained from the Petersen graph by the removal of any
vertex, in view of the symmetry of the Petersen graph. Since the Petersen graph is
the smallest snark and since P ∗ is critical, the graph P ∗ is the one which maximises
the ratio ∆(G)/|V (G)| amongst all known non-SO Class 2 graphs G with ∆ = 3.
This is one of the reasons why the Overfull Conjecture states the equivalence
between Class 2 and SO for n-vertex simple graphs satisfying ∆ > n/3. However,
we believe that, for graphs with ∆ > 3, we could replace the lower bound n/3
by a smaller fraction of n, enlarging the set of graphs for which the equivalence
between SO and Class 2 seems to hold. In order to do so, it is important to
find the order of the smallest non-SO Class 2 graphs in function of its maximum
degree. For example, if one discovers that the smallest 5-snark G has 26 vertices,
then, since G−u is by Theorem 6.2 also Class 2 for any u ∈ V (G), we may propose
the following stronger form of the Overfull Conjecture: if G is an n-vertex simple
graph G satisfying ∆ > n/3, or ∆ ≥ 5 and ∆ > n/5, then G is Class 2 if and only
if G is SO. To the best of our knowledge, the smallest known d-snarks for d ≥ 5,
d ̸= 7, are Meredith’s graphs Gd, for d ≡ 2, 3, 4 (mod 6), and G′

d, for d ≡ 0, 1, 5
(mod 6), both with 20d− 10 vertices, as discussed in Sect. 1.

It is surprising that, due to the Overfull Conjecture, when restricted to n-
vertex simple graphs G with ∆(G) bounded below by a fraction of n, the edge-
colouring problem (deciding if a graph is Class 1 ) would be reducible to the test of a
polynomial-time verifiable property. An evidence for this is the fact that we present
in Theorem 6.3 on k-EDGE-COLOURING, i.e. the problem of deciding, for some
fixed integer k, if a graph is k-edge-colourable. Notice that this problem is also
NP-complete, for any k ≥ 3, from Leven and Galil’s reduction [10]. We show that
k-EDGE-COLOURING is polynomial whenever ∆(G) is bounded below not only by
a fraction of n, but by any Ω(n) function (or, equivalently, when n is bounded above
by any O(∆(G)) function). The proof is inspired in the paper by Galby et al. [59],
wherein the authors use the same argument to show that k-EDGE-COLOURING
is linear-time solvable, i.e. solvable in time O(n), for Pt-free graphs for any fixed
t. In contrast, the computational complexity of EDGE-COLOURING for P4-free
graphs (also known as cographs) remains open despite much effort [44–48].

Theorem 6.3. Let k ∈ Z≥0 be a fixed constant, k-EDGE-COLOURING is poly-
nomial when restricted to n-vertex graphs with n bounded above by an O(∆(G))
function f : Z≥0 → R.

Proof (inspired in [59]). Our polynomial algorithm works on a given input graph
G as follows. First, find in linear time the maximum degree ∆ of G. If ∆ ̸= k,
output yes if ∆ < k, or no if ∆ > k, in view of Vizing’s Theorem. If ∆ = k, we
know that n ≤ f(∆) and |E(G)| ≤ (f(∆))2 for some O(∆) function f : Z≥0 → R.
Since, in this case, ∆ = k is a constant, we have that (f(∆))2 is bounded above
by a constant which does not depend on the size of the input graph. Ergo, any
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exact edge-colouring algorithm, even a brute-force search, can determine the k-
edge-colourability of G in constant time. □

For all that we have discussed in this section, it seems that the hunting of
the smallest d-snarks may be related to the very nature of the hardness of the
edge-colouring problem. An interesting graph class wherein d-snarks could be
hunted is the class of the complementary prisms. Let G be any graph on a non-
empty set of vertices, the complementary prism GG is the graph obtained from
the graphs G and its complement G by connecting with an edge each vertex in G
to its corresponding vertex in G. The Petersen graph is the complementary prism
C5C5.

Edge-colouring complementary prisms was the subject of a previous study of
ours, joint with A. Zorzi [60], in which we proved that:

• every non-regular complementary prism with maximum degree ∆ is ∆-
edge-colourable;

• every d-regular complementary prism on n vertices has odd d, is (d − 1)-
edge-connected, and satisfies n = 4d− 2.

Therefore, the Petersen graph is the only complementary prism which is 3-regular
and, if some d-regular complementary prism is not d-edge-colourable, then it is
a d-snark. However, we could not find yet any non-d-edge-colourable d-regular
complementary prism with d ≥ 5. In fact, we verified that all complementary
prisms with d = 5 (and thus 18 vertices) are d-edge-colourable, as well as 10 000
randomly generated regular complementary prisms with d = 7 (thus 26 vertices).

7. Further remarks

As discussed in Sect. 6, finding the smallest d-snarks may be of much interest
to better understand the hardness of edge-colouring and the Overfull Conjecture.
However, all d-snarks with d ≥ 5 which we know are either Meredith’s graphs
with 20d− 10 vertices and d ̸= 7, or the even larger graphs of the infinite families
presented in Sect. 5. In an undergraduate final project supervised by one of the
authors [61], the student conducted a computational experiment to search for 5-
snarks amongst all 5-regular graphs on 16 vertices and 90 billion distinct 5-regular
graphs on 18 vertices. No graph tested was a 5-snark.

We encourage future investigation on how the base gadget presented in Sect. 4
could be used to prove Conjectures 1.1 and 1.2. As already discussed in Sect. 4,
these conjectures are already settled for d = 3 by Holyer’s proof [13]. By the use
of a Turing oracle reduction (instead of a more common Karp reduction), we can
also settle Conjecture 1.2 for d = 5, as discussed in a local workshop [62] and
presented below.

Proof of Conjecture 1.2 for d = 5. Let G be a 5-regular graph which admits a 5-
edge-colouring. From the Parity Lemma follows that, ifG has a cut with fewer than
four edges separating two induced subgraphs H1 and H2, then this cut must be a
matching with exactly two edges uv and xy, both coloured the same. Assuming



22 TITLE WILL BE SET BY THE PUBLISHER

u, x ∈ V (H1) and v, y ∈ V (H2), let G1 := H1+ux and G2 := H2+vy (see Fig. 13).
If ux (vy) is an edge of H1 (H2), we can get rid of multiple edges in G1 (G2) in the
same manner as multiple edges have been handled in Sect. 4. Clearly, the 5-edge-
colouring of G yields a 5-edge-colouring of the union of the 5-regular graphs G1

and G2. Conversely, to construct a 5-edge-colouring of G from a 5-edge-colouring
of G1 ∪ G2, it suffices to rename the colours in G1 or in G2 so that the colours
assigned to ux and vy are the same.

(A)

u

x
H1

v

y
H2 (B)

u

x
G1

v

y
G2

Figure 13. (A) Graph G with a matching {uv, xy} separating
two induced subgraphs H1 and H2; (B) the disjoint union of the
graphs G1 := H1 + ux and G2 := H2 + vy.

We have, then, a Turing oracle reduction from EDGE-COLOURING(5-regular)
to EDGE-COLOURING(5-regular, 4-edge-connected). The reduction works on an
input graph G as follows:

1. if G has some cut with fewer than four edges which is not a matching with
exactly two edges, output no;

2. break each cut with two edges as in Fig. 13, obtaining 4-edge-connected
4-regular graphs G1, . . . , Gk, handling multiple edges as in Sect. 4;

3. call the oracle for Gi, for each i ∈ {1, . . . , k};
4. output yes if and only if G1, . . . , Gk are all 5-edge-colourable. □

This Turing reduction does not help much in the hunting of 5-snarks. If the
proof had been constructed with a Karp reduction from 3SAT, then, for every
non-satisfiable 3SAT formula, even the smallest one, the Karp reduction would
output a 5-snark. With the Turing reduction, on the other hand, if we get a 5-
snark Gi from a non-5-edge-colourable 5-regular graph G, we already had Gi as a
4-edge-connected component of G, up to the simple operation described in Fig. 13.
Therefore, in the beginning of this project, when the Turing oracle reduction was
all that we had, we could prove that 5-snarks must exist, otherwise P = NP, but
we could not find any of these graphs.

One can verify that all d-snarks with d ≥ 5 appearing in this paper (Meredith’s
d-snarks, Rizzi’s 5-snarks discussed in Sect. 1 and the d-snarks from the infinite
families constructed in Sect. 5) contain snarks as subgraphs. This leads to the
following.

Question 7.1. Does every d-snark with d ≥ 5 contain a snark (as a subgraph)?
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This question does not seem easy to answer. We know that every d-snark with
d ≥ 5 contains a Class 2 subcubic graph4, but not necessarily cubic. Relatedly,
one may wonder if every 5-snark can be decomposed into two disjoint perfect
matchings and a (not necessarily 2-edge-connected) Class 2 cubic graph, but this
does not hold. Rizzi’s poorly matchable 5-snarks, mentioned in Sect. 1, are clearly
counterexamples, since they are graphs wherein every pair of perfect matchings
intersect.
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