
RAIRO-Oper. Res. 58 (2024) 1609–1632 RAIRO Operations Research
https://doi.org/10.1051/ro/2024045 www.rairo-ro.org

ON THE TOTAL CHROMATIC NUMBER OF THE DIRECT PRODUCT OF
CYCLES AND COMPLETE GRAPHS

Diane Castonguay1, Celina M.H. de Figueiredo2, Luis A.B. Kowada3, Caroline
S.R. Patrão4,*, Diana Sasaki5 and Mario Valencia-Pabon6

Abstract. A 𝑘-total coloring of a graph 𝐺 is an assignment of 𝑘 colors to the elements (vertices and
edges) of 𝐺 so that adjacent or incident elements have different colors. The total chromatic number is
the smallest integer 𝑘 for which 𝐺 has a 𝑘-total coloring. The well known Total Coloring Conjecture
states that the total chromatic number of a graph is either Δ(𝐺) + 1 (called Type 1) or Δ(𝐺) + 2
(called Type 2), where Δ(𝐺) is the maximum degree of 𝐺. We consider the direct product of complete
graphs 𝐾𝑚 × 𝐾𝑛. It is known that if at least one of the numbers 𝑚 or 𝑛 is even, then 𝐾𝑚 × 𝐾𝑛

is Type 1, except for 𝐾2 × 𝐾2. We prove that the graph 𝐾𝑚 × 𝐾𝑛 is Type 1 when both 𝑚 and 𝑛
are odd numbers, by using that the conformable condition is sufficient for the graph 𝐾𝑚 ×𝐾𝑛 to be
Type 1 when both 𝑚 and 𝑛 are large enough, and by constructing the target total colorings by using
Hamiltonian decompositions and a specific color class, called guiding color. We additionally apply our
technique to the direct product 𝐶𝑚×𝐾𝑛 of a cycle with a complete graph. Interestingly, we are able to
find a Type 2 infinite family 𝐶𝑚 ×𝐾𝑛, when 𝑚 is not a multiple of 3 and 𝑛 = 2. We provide evidence
to conjecture that all other 𝐶𝑚 ×𝐾𝑛 are Type 1.
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1. Introduction

Let 𝐺 be a simple connected graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). A 𝑘-total coloring of a graph
𝐺 is an assignment of 𝑘 colors to the elements (vertices and edges) of 𝐺 so that adjacent or incident elements
have different colors. The total chromatic number, denoted by 𝜒𝑇 (𝐺), is the smallest integer 𝑘 for which 𝐺 has
a 𝑘-total coloring. Clearly, 𝜒𝑇 (𝐺) ≥ ∆(𝐺) + 1 and the Total Coloring Conjecture (TCC), posed independently
by Vizing [13] and Behzad et al. [2], states that 𝜒𝑇 (𝐺) ≤ ∆(𝐺) + 2, where ∆(𝐺) is the maximum degree
of 𝐺. Graphs with 𝜒𝑇 (𝐺) = ∆(𝐺) + 1 are said to be Type 1 and graphs with 𝜒𝑇 (𝐺) = ∆(𝐺) + 2 are said to be
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Type 2. The TCC has been verified in restricted cases, such as cubic graphs [12] and graphs with large maximum
degree [9], but has not been settled for all regular graphs for more than fifty years.

We denote an undirected edge 𝑒 ∈ 𝐸(𝐺) whose ends are 𝑢 and 𝑣 by 𝑢𝑣. The direct product (also called tensor
product or categorical product) of two graphs 𝐺 and 𝐻 is a graph denoted by 𝐺 ×𝐻, whose vertex set is the
Cartesian product 𝑉 (𝐺) × 𝑉 (𝐻), for which vertices (𝑢, 𝑣) and (𝑢′, 𝑣′) are adjacent if and only if 𝑢𝑢′ ∈ 𝐸(𝐺)
and 𝑣𝑣′ ∈ 𝐸(𝐻). The maximum degree of 𝐺 × 𝐻 is ∆(𝐺 × 𝐻) = ∆(𝐺) · ∆(𝐻), and 𝐺 × 𝐻 is regular if and
only if both 𝐺 and 𝐻 are regular graphs. Let 𝐺1 = (𝑉,𝐸1) and 𝐺2 = (𝑉,𝐸2) be two graphs on the same vertex
set 𝑉 and where 𝐸1 ∩ 𝐸2 = ∅, and denote by

⨁︀2
𝑖=1 𝐺𝑖 the direct sum graph 𝐺 = (𝑉,𝐸1 ∪ 𝐸2) of graphs 𝐺1

and 𝐺2. In this work, given two graphs 𝐺 and 𝐻, we use the well known property that the direct product is
distributive over edge disjoint union of graphs, that is, if 𝐺 =

⨁︀𝑡
𝑖=1 𝐺𝑖, where 𝐺𝑖 are edge-disjoint subgraphs

of 𝐺 and 𝐸(𝐺) = 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ . . . ∪ 𝐸(𝐺𝑡), then 𝐻 ×𝐺 =
⨁︀𝑡

𝑖=1(𝐻 ×𝐺𝑖).
The complete graph on 𝑛 vertices is denoted by 𝐾𝑛. The direct product of complete graphs 𝐾𝑚 ×𝐾𝑛 is a

regular graph of degree ∆(𝐾𝑚 × 𝐾𝑛) = (𝑚 − 1)(𝑛 − 1) and can be described as an 𝑛-partite graph with 𝑚
vertices in each part. The total chromatic number of 𝐾𝑚 ×𝐾𝑛 has been determined when 𝑚 or 𝑛 is an even
number. When 𝑚 = 𝑛 = 2, we have the disconnected 2𝐾2, which is Type 2, since each connected component
𝐾2 is Type 2. When 𝑚 ≥ 3, 𝐾𝑚 × 𝐾2 is the complete bipartite graph 𝐾𝑚,𝑚 minus a perfect matching, and
Yap [14] proved that this graph is Type 1. When 𝑛 ≥ 4 and 𝑛 is an even number, Geetha and Somasundaram [8]
proved that 𝐾𝑛×𝐾𝑛 is Type 1. Janssen and Mackeigan [10] proved that 𝐾𝑚×𝐾𝑛 is Type 1 when 𝑚 or 𝑛 is an
even number, with 𝑚, 𝑛 ≥ 3. As far as we know, for the remaining case, when both 𝑚 and 𝑛 are odd numbers,
it is not known whether 𝐾𝑚 ×𝐾𝑛 is Type 1 or Type 2. In this work, we establish the total chromatic number
of 𝐾𝑚×𝐾𝑛, when 𝑚 and 𝑛 are odd numbers, by proving that these graphs are Type 1. Thus, we can conclude
that, except for 𝑚 = 𝑛 = 2, the graph 𝐾𝑚 ×𝐾𝑛 is Type 1.

In order to achieve the claimed total colorings for all graphs 𝐾𝑚 ×𝐾𝑛, when 𝑚 and 𝑛 are odd numbers, we
prove two theorems according to whether 𝑚 and 𝑛 are both large enough or not. In Section 2, we recall the known
conformable necessary condition to be Type 1 and a known lower bound on the vertex degree for regular graphs
of odd order which ensures that the conformable condition is also a sufficient condition to be Type 1. Moreover,
we prove Lemma 2.1 and Theorem 2.2 which together provide the required total colorings of the direct product
of complete graphs 𝐾𝑚 × 𝐾𝑛, for odd numbers 𝑚, 𝑛 ≥ 13. In Section 3, we present preliminary concepts on
Hamiltonian decompositions and the guiding color technique. Such technique uses a Hamitonian decomposition
together with a color class with specific properties, called guiding color class, that guides how to construct
the Type 1 total coloring. This technique can be applied to any graph with a Hamiltonian decomposition. In
Section 4, we prove Theorem 4.1 which provides the required Type 1 total colorings of 𝐾𝑚 × 𝐾𝑛, for odd
numbers 𝑚, 𝑛 ≥ 3 and 𝑚 < 13. Along the proof, we omit from the main text a finite number of particular
graphs that are too small to obey the described pattern. Some particular Hamiltonian decompositions and their
tables containing the elements of the guiding color are given in the appendix.

In Section 5, we additionally apply our technique to another class of graphs, the direct product of a cycle with
a complete graph, denoted by 𝐶𝑚×𝐾𝑛. We combine previous results [4,10] to the Hamiltonian decompositions
and the guiding color technique introduced in Section 3. For 𝑚 or 𝑛 even, we determine that 𝐶𝑚×𝐾𝑛 is Type 2,
when 𝑚 is not a multiple of 3 and 𝑛 = 2, and Type 1, otherwise. For 𝑚 and 𝑛 odd, we use the same technique of
the guiding color as we did in Section 4 to additionally prove that 𝐶2𝑛−1 ×𝐾𝑛 is Type 1, and we give evidence
to conjecture that 𝐶𝑚 ×𝐾𝑛 remains Type 1 for all odd 𝑚 and 𝑛. That would imply that 𝐶𝑚 ×𝐾𝑛 is Type 2 if
and only if 𝑚 is not a multiple of 3 and 𝑛 = 2.

2. Graphs 𝐾𝑚 ×𝐾𝑛 are Type 1, for odd numbers 𝑚, 𝑛 ≥ 13

A regular graph 𝐺 is conformable if 𝐺 admits a vertex coloring with ∆(𝐺) + 1 colors such that the number
of vertices in each color class has the same parity as |𝑉 (𝐺)|, as defined by Chetwynd and Hilton [5].

Lemma 2.1. For odd numbers 𝑚, 𝑛 ≥ 3, the graph 𝐾𝑚 ×𝐾𝑛 is conformable.
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Proof. Consider 𝑚 ≤ 𝑛. We construct a vertex coloring with (𝑚− 1)(𝑛− 1) + 1 colors such that each color class
is composed by 1 or 3 vertices. Let 𝑡 = 𝑚+𝑛−2

2 . Since 𝑡 < 𝑛, the vertices (0, 𝑖), (1, 𝑖), (2, 𝑖) in the direct product
𝐾𝑚 ×𝐾𝑛 define an independent set and can receive the same color 𝑐𝑖, for 𝑖 = {0, . . . , 𝑡− 1}. Now color each of
the 𝑚𝑛− 3𝑡 remaining uncolored vertices with a different additional color, to obtain the desired vertex coloring
with 𝑡 + (𝑚𝑛− 3𝑡) = 𝑚𝑛− 2𝑡 = 𝑚𝑛−𝑚− 𝑛 + 2 = (𝑚− 1)(𝑛− 1) + 1 = ∆(𝐾𝑚 ×𝐾𝑛) + 1 colors. �

The TCC for graphs 𝐺 having ∆(𝐺) ≥ 3
4 |𝑉 (𝐺)| was established by Hilton and Hind [9]. Chetwynd et al. [6]

proved that when 𝐺 is a regular graph of odd order and with degree ∆(𝐺) ≥
√

7
3 |𝑉 (𝐺)|, then 𝐺 is Type

1 if and only if 𝐺 is conformable. Chew [7] improved this result by showing that it suffices to require that
∆(𝐺) ≥ (

√
37−1)
6 |𝑉 (𝐺)|. In Theorem 2.2, we establish that when 𝑚, 𝑛 ≥ 13 are odd numbers, then ∆(𝐾𝑚×𝐾𝑛)

satisfies the lower bound required by Chew, which together with Lemma 2.1 implies the desired result.

Theorem 2.2. For odd numbers 𝑚, 𝑛 ≥ 13, the graph 𝐾𝑚 ×𝐾𝑛 is Type 1.

Proof. Let 𝑚, 𝑛 ≥ 13 be two odd numbers. Hence, (7 −
√

37)𝑛 − 6 ≥ (7 −
√

37) · 13 − 6 ≥ 0 and 𝑛 ≥ 13 ≥
72

13(7−
√

37)−6
. So, 13(7 −

√
37)𝑛 ≥ 72 + 6𝑛 and 13(7 −

√
37)𝑛 − 13 · 6 ≥ 72 + 6𝑛 − 13 · 6, which implies that

13 ≥ 6(𝑛−1)

(7−
√

37)𝑛−6
. Now, as 𝑚 ≥ 13, we have that 𝑚 ≥ 6(𝑛−1)

(7−
√

37)𝑛−6
. Therefore, (7−

√
37)𝑚𝑛−6𝑚 ≥ 6𝑛−6, which

is equivalent to (1−
√

37)𝑚𝑛 + 6𝑚𝑛− 6𝑚− 6𝑛 + 6 ≥ 0. So, 𝑚𝑛−𝑚− 𝑛 + 1 = (𝑚− 1)(𝑛− 1) ≥ (
√

37−1)
6 𝑚𝑛.

Since ∆(𝐾𝑚 ×𝐾𝑛) = (𝑚 − 1)(𝑛 − 1), we have that ∆(𝐾𝑚 ×𝐾𝑛) ≥ (
√

37−1)
6 |𝑉 (𝐾𝑚 ×𝐾𝑛)|. Therefore, by the

Chew’s result [7] and by Lemma 2.1, we have that 𝐾𝑚 ×𝐾𝑛 is Type 1. �

3. Hamiltonian decompositions and the guiding color technique

For 𝐾3×𝐾𝑛, 𝐾5×𝐾𝑛 and 𝐾7×𝐾𝑛, with 𝑛 ≥ 3 an odd number, in Section 3.1, we use Walecki’s Hamiltonian
decomposition of 𝐾𝑛 to define suitable Hamiltonian decompositions of 𝐾𝑚 ×𝐾𝑛, first when 𝑔𝑐𝑑(𝑚, 𝑛) = 1 and
second when 𝑔𝑐𝑑(𝑚, 𝑛) ̸= 1.

In Section 3.2, we define the guiding color technique that can be applied to any graph with a Hamiltonian
decomposition. This technique uses a color class with specific properties, called a guiding color. In our case,
both the Hamiltonian decomposition constructed in Section 3.1 and the guiding color given in Section 4 define
the target (∆(𝐾𝑚 ×𝐾𝑛) + 1)-total coloring.

For 𝐾9 ×𝐾𝑛 and 𝐾11 ×𝐾𝑛, we use the guiding color technique only for few particular graphs by presenting
Hamiltonian decomposition and guiding color in Section A.2 of the appendix.

3.1. Hamiltonian decompositions

A 𝑘-regular graph 𝐺 has a Hamiltonian decomposition (or is Hamiltonian decomposable) if its edge set can
be partitioned into 𝑘

2 Hamiltonian cycles when 𝑘 is an even number, or into (𝑘−1)
2 Hamiltonian cycles plus a

one factor (or perfect matching) when 𝑘 is an odd number. Please refer to [1] for a survey on Hamiltonian
decompositions.

Consider the well known Walecki’s Hamiltonian decomposition of the complete graph 𝐾𝑛 for 𝑛 ≥ 3. We shall
focus on an odd number 𝑛. Let 𝑛 = 2𝑤 + 1 and label the vertices of 𝐾𝑛 as 0, 1, . . . , 2𝑤. Following the notation
used in [1], let 𝐶𝑛 be the Hamiltonian cycle ⟨0, 1, 2, 2𝑤, 3, 2𝑤−1, 4, 2𝑤−2, 5, 2𝑤−3, . . . , 𝑤+3, 𝑤, 𝑤+2, 𝑤+1, 0⟩. If
𝜎 is the permutation (0)(1, 2, 3, 4, . . . , 2𝑤−1, 2𝑤), then 𝜎0(𝐶𝑛), 𝜎1(𝐶𝑛), 𝜎2(𝐶𝑛), . . . , 𝜎𝑤−1(𝐶𝑛) is a Hamiltonian
decomposition of 𝐾𝑛. Observe that 𝜎0(𝐶𝑛) = 𝐶𝑛. We write 𝐾𝑛 =

⨁︀𝑤
𝑖=1 𝜎𝑖−1(𝐶𝑛). Denote by 𝜎𝑡(𝐶𝑛)𝑧, with

𝑧 = 0, 1, . . . , 𝑛 − 1 the 𝑧th-vertex in the cycle 𝜎𝑡(𝐶𝑛), and in fact, the vertex 0 is always the 0th-vertex. Note
that for 𝑡 ≥ 𝑤, the cycle 𝜎𝑡(𝐶𝑛) is the opposite cycle of 𝜎𝑡 mod 𝑤(𝐶𝑛), that is, 𝜎𝑡(𝐶𝑛)𝑧 = 𝜎𝑡 mod 𝑤(𝐶𝑛)𝑛−𝑧 for
all 𝑧 ≥ 1.

For instance consider 𝑛 = 5, write 𝑛 = 2𝑤 + 1 and thus 𝑤 = 2, to get the Hamiltonian decomposition
𝐾5 =

⨁︀2
𝑖=1 𝜎𝑖−1(𝐶5), where 𝜎0(𝐶5) = ⟨0, 1, 2, 4, 3, 0⟩ and 𝜎1(𝐶5) = ⟨0, 2, 3, 1, 4, 0⟩, as highlighted in Figure 1.
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Figure 1. Walecki’s Hamiltonian decomposition of 𝐾5 = 𝜎0(𝐶5)
⨁︀

𝜎1(𝐶5).

Figure 2. The cycle 𝐶(1, 1)0 in 𝐾3 ×𝐾5.

Note that 𝜎2(𝐶5) = ⟨0, 3, 4, 2, 1, 0⟩ is the opposite cycle of 𝜎0(𝐶5), and 𝜎3(𝐶5) = ⟨0, 4, 1, 3, 2, 0⟩ is the opposite
cycle of 𝜎1(𝐶5).

It is well known and not hard to see that the direct product of cycle graphs is Hamiltonian decomposable if
and only if at least one of them is an odd cycle [11]. In what follows, for both 𝑚 and 𝑛 odd numbers, we shall
use Walecki’s Hamiltonian decomposition of the complete graph 𝐾𝑛 and the well known distributive property
of the direct product to define a Hamiltonian decomposition of 𝐾𝑚×𝐾𝑛, for 𝑚 = 3, 5, 7 and odd number 𝑛 ≥ 3
suitable to our target total coloring.

Write odd numbers 𝑚, 𝑛 ≥ 3 as 𝑚 = 2𝑞 + 1 and 𝑛 = 2𝑤 + 1. Let 𝑔𝑐𝑑(𝑚, 𝑛) = 𝑑. For 𝑗 = 1, . . . , 2𝑞,
𝑖 = 1, . . . , 2𝑤 and 𝑘 = 0, . . . , 𝑑 − 1, denote by 𝐶(𝑗, 𝑖)𝑘 the cycle on 𝑚𝑛

𝑑 vertices ⟨𝐶(𝑗, 𝑖)𝑘
𝑧⟩𝑧=0,..., 𝑚𝑛

𝑑
, where

𝐶(𝑗, 𝑖)𝑘
𝑧 = (𝜎𝑗−1(𝐶𝑚)(𝑧+𝑘) mod 𝑚, 𝜎𝑖−1(𝐶𝑛)𝑧 mod 𝑛), with 𝑧 = 0, . . . , 𝑚𝑛

𝑑 , is the 𝑧th-vertex of the cycle 𝐶(𝑗, 𝑖)𝑘.
Observe that according to the notation for vertex 𝐶(𝑗, 𝑖)𝑘

𝑧 , we have 𝐶(𝑗, 𝑖)𝑘
0 = 𝐶(𝑗, 𝑖)𝑘

𝑚𝑛
𝑑

, and the vertex (0, 0)
is always the 0th-vertex of 𝐶(𝑗, 𝑖)0. For instance, Figure 2 presents the cycle 𝐶(1, 1)0 using the cycle 𝜎0(𝐶3) of
𝐾3 and the cycle 𝜎0(𝐶5) of 𝐾5.

We consider next the construction of a Hamiltonian decomposition of 𝐾𝑚 × 𝐾𝑛 according to whether
𝑔𝑐𝑑(𝑚, 𝑛) = 1 or not. Case 1 considers 𝑔𝑐𝑑(𝑚, 𝑛) = 1 which gives a single 𝑘 = 0 and that each 𝐶(𝑗, 𝑖)0 is
a Hamiltonian cycle which gives that {𝐶(𝑗, 𝑖) = 𝐶(𝑗, 𝑖)0 | 𝑗 = 1, . . . 𝑞 and 𝑖 = 1, . . . , 2𝑤} is a Hamiltonian
decomposition of 𝐾𝑚 × 𝐾𝑛. Case 2 considers 𝑔𝑐𝑑(𝑚, 𝑛) ̸= 1 which implies that each cycle 𝐶(𝑗, 𝑖)𝑘 is not a
Hamiltonian cycle. We construct a Hamiltonian decomposition of 𝐾𝑚 × 𝐾𝑛 given by {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 2𝑞
and 𝑖 = 1, . . . , 𝑤} where each Hamiltonian cycle is composed by 𝑑 paths obtained from the cycles 𝐶(𝑗, 𝑖)𝑘, such
that, for each 𝑘 = 0, . . . , 𝑑− 1, the cycle 𝐶(𝑗, 𝑖)𝑘 becomes a path by removing one edge.

Case 1: 𝑔𝑐𝑑(𝑚, 𝑛) = 1. Consider {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . 𝑞 and 𝑖 = 1, . . . , 2𝑤}, a Hamiltonian decomposition of
𝐾𝑚 ×𝐾𝑛, where 𝐶(𝑗, 𝑖) = 𝐶(𝑗, 𝑖)0, see an example in Figure 3. Indeed, consider 𝐾𝑚 =

⨁︀𝑞
𝑗=1(𝜎𝑗−1(𝐶𝑚))

and 𝐾𝑛 =
⨁︀𝑤

𝑖=1(𝜎𝑖−1(𝐶𝑛)) the Walecki’s Hamiltonian decompositions of 𝐾𝑚 and 𝐾𝑛, respectively. Thus
we write 𝐾𝑚 × 𝐾𝑛 =

⨁︀𝑞
𝑗=1

⨁︀𝑤
𝑖=1(𝜎𝑗−1(𝐶𝑚) × 𝜎𝑖−1(𝐶𝑛)). As the degree ∆(𝜎𝑗−1(𝐶𝑚) × 𝜎𝑖−1(𝐶𝑛)) = 4,

for any 𝑗 = 1, 2, . . . , 𝑞 and for any 𝑖 = 1, 2, . . . , 𝑤, each subgraph 𝜎𝑗−1(𝐶𝑚) × 𝜎𝑖−1(𝐶𝑛) of 𝐾𝑚 × 𝐾𝑛 has
two Hamiltonian cycles: 𝐶(𝑗, 𝑖) and 𝐶(𝑗, 𝑖 + 𝑤), and so, it suffices to consider 𝐶(𝑗, 𝑖) for 𝑗 = 1, . . . , 𝑞 and
𝑖 = 1, . . . , 2𝑤.
For instance, consider 𝐾3 × 𝐾5 in Figure 3. As 𝑔𝑐𝑑(3, 5) = 1 we use 𝐾3 × 𝐾5 =

⨁︀1
𝑗=1

⨁︀2
𝑖=1(𝜎𝑗−1(𝐶3) ×

𝜎𝑖−1(𝐶5)), the 2 Hamiltonian cycles of the subgraph 𝜎0(𝐶3) × 𝜎0(𝐶5) of 𝐾3 ×𝐾5 are 𝐶(1, 1) and 𝐶(1, 3).
Analogously, the 2 Hamiltonian cycles of the subgraph 𝜎0(𝐶3)× 𝜎1(𝐶5) of 𝐾3×𝐾5 are 𝐶(1, 2) and 𝐶(1, 4).
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Figure 3. A depiction of 𝐾3 ×𝐾5 partitioned into 4 Hamiltonian cycles. In (a) we have the
Hamiltonian cycle 𝐶(1, 1) with 3 colors: the edges (1, 1)(2, 2), (1, 2)(2, 4) and (1, 3)(2, 0) are
colored with the guiding purple color; the endvertices of the purple edges and the remaining
edges of 𝐶(1, 1) are colored with colors orange and dark green. In (b) we have the Hamiltonian
cycle 𝐶(1, 2) also colored with 3 colors: the edge (0, 1)(1, 4) also colored with the guiding purple
color; the endvertices of the purple edge and the remaining edges of 𝐶(1, 2) are colored with
colors red and dark blue. In (c) we have 𝐶(1, 3) also with 3 colors: the edge (1, 0)(2, 3) also
colored with the guiding purple color; the endvertices of the purple edge and the remaining
edges of 𝐶(1, 3) are colored with colors light blue and light brown. Finally in (d) we have
𝐶(1, 4) also colored with 3 colors: the edge (0, 3)(2, 1) also colored with the guiding purple
color; the endvertices of the purple edge and the remaining edges of 𝐶(1, 4) are colored with
colors pink and turquoise blue.

Case 2: 𝑔𝑐𝑑(𝑚, 𝑛) = 𝑑 > 1. By definition, in this case, each 𝐶(𝑗, 𝑖)𝑘 is not a Hamiltonian cycle. For 𝑘 =
0, . . . , 𝑑 − 1, denote by 𝑃 (𝑗, 𝑖)𝑘 the path induced by the 𝑚𝑛

𝑑 vertices 𝐶(𝑗, 𝑖)𝑘
𝑧 , with 𝑧 = 0, . . . , 𝑚𝑛

𝑑 − 1,
obtained from 𝐶(𝑗, 𝑖)𝑘 by removing one edge. Consider {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 2𝑞 and 𝑖 = 1, . . . , 𝑤} a Hamilto-
nian decomposition of 𝐾𝑚 ×𝐾𝑛, where the Hamiltonian cycles are defined as follows.
(i) For 𝑚 = 3:

𝐶(𝑗, 𝑖) =
⟨︀
𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)2, (0, 0)

⟩︀
.

For 𝑖 = 1, . . . , 𝑤, the cycles 𝐶(1, 𝑖) and 𝐶(2, 𝑖) form a Hamiltonian decomposition of 𝜎0(𝐶3)× 𝜎𝑖−1(𝐶𝑛).
For instance, consider 𝐾3×𝐾9 in Figure 4. As 𝑔𝑐𝑑(3, 9) = 3 we write 𝐾3×𝐾9 =

⨁︀4
𝑖=1(𝜎0(𝐶3)×𝜎𝑖−1(𝐶9)).

The 2 Hamiltonian cycles of the subgraph 𝜎0(𝐶3) × 𝜎0(𝐶9) are 𝐶(1, 1) and 𝐶(2, 1); and analogously of
the subgraph 𝜎0(𝐶3)× 𝜎1(𝐶9) are 𝐶(1, 2) and 𝐶(2, 2); of the subgraph 𝜎0(𝐶3)× 𝜎2(𝐶9) are 𝐶(1, 3) and
𝐶(2, 3); finally of the subgraph 𝜎0(𝐶3)× 𝜎3(𝐶9) are 𝐶(1, 4) and 𝐶(2, 4).

(ii) For 𝑚 = 5:

𝐶(𝑗, 𝑖) =

{︃⟨︀
𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)2, 𝑃 (𝑗, 𝑖)3, 𝑃 (𝑗, 𝑖)4, (0, 0)

⟩︀
, if 𝑗 = 1, 3⟨︀

𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)2, 𝑃 (𝑗, 𝑖)4, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)3, (0, 0)
⟩︀
, if 𝑗 = 2, 4.

For 𝑖 = 1, . . . , 𝑤, the set of cycles {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 4} is a Hamiltonian decomposition of 𝐾5×𝜎𝑖−1(𝐶𝑛).
(iii) For 𝑚 = 7:

𝐶(𝑗, 𝑖) =

{︃⟨︀
𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)3, 𝑃 (𝑗, 𝑖)4, 𝑃 (𝑗, 𝑖)5, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)2, 𝑃 (𝑗, 𝑖)6, (0, 0)

⟩︀
, if 𝑗 = 1, 3, 5⟨︀

𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)4, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)3, 𝑃 (𝑗, 𝑖)6, 𝑃 (𝑗, 𝑖)2, 𝑃 (𝑗, 𝑖)5, (0, 0)
⟩︀
, if 𝑗 = 2, 4, 6.

For 𝑖 = 1, . . . , 𝑤, the set of cycles {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 6} is a Hamiltonian decomposition of 𝐾7×𝜎𝑖−1(𝐶𝑛).

3.2. The guiding color technique

We are ready to explain how a (∆(𝐾𝑚 ×𝐾𝑛) + 1)-total coloring of 𝐾𝑚 ×𝐾𝑛 is obtained by considering the
Hamiltonian decomposition of 𝐾𝑚 ×𝐾𝑛 into Hamiltonian cycles 𝐶(𝑖, 𝑗) defined in Section 3.1. In a (∆(𝐾𝑚 ×
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Figure 4. A depiction of 𝐾3 ×𝐾9 partitioned into 8 Hamiltonian cycles. We have the Hamil-
tonian cycle 𝐶(1, 1) with 3 colors: the edges (1, 1)(2, 2), (1, 3)(2, 7) and (1, 6)(2, 5) are col-
ored with the guiding purple color; the endvertices of the purple edges and the remaining
edges of 𝐶(1, 1) are colored with colors red and turquoise blue. In the remaining 7 Hamilto-
nian cycles, each of them has one edge with the guiding purple color whose endvertices and
the remaining edges of the cycle are colored with additional new two colors. The vertices
(0, 0), (0, 2), (0, 4), (0, 5), (0, 6), (0, 7) and (0, 8) are an independent set and can be colored with
the guiding purple color obtaining a 17-total coloring of 𝐾3 ×𝐾9.

𝐾𝑛)+1)-total coloring, each color class is such that each vertex is either inside the color class or is incident to an
edge of the color class. We shall choose a guiding color with the additional property that its color class contains
one or three edges of each Hamiltonian cycle. Note that each Hamiltonian cycle is an odd cycle and, by Vizing’s
theorem [13], admits a 3-edge coloring. Thus, for each cycle, we assign two additional colors to the remaining
edges of the Hamiltonian cycle and to the endvertices of the edges with the guiding color, as illustrated by
Figures 3 and 4. With suitable choices for the edges of the matching colored by the guiding color, the so far
uncolored vertices define an independent set which can be also colored with the guiding color as Figure 5.

In order to obtain a (∆(𝐾𝑚 × 𝐾𝑛) + 1)-total coloring, we give a table composed by the elements of the
guiding color class. We identify the edges of the guiding color on the corresponding Hamiltonian cycle where
they belong. If the Hamiltonian cycle contains a unique edge of the guiding color, then its endvertices and the
remaining edges of the cycle are easily colored using two additional colors. If the Hamiltonian cycle contains
three edges of the guiding color, then we can easily see that their endvertices define two independent sets that
can be colored with two colors as also the remaining edges of the cycle.

For instance, consider 𝐾3 ×𝐾5 in Figure 5. We represent a table and a subgraph highlighting all elements
(edges and vertices) colored by the guiding color and the colored vertices of Figure 3. We can identify which
of the four Hamiltonian cycles contains which highlighted edges by observing the colors of their endvertices. In
Figure 3a, the six endvertices of the three edges colored with the guiding color (purple) in 𝐶(1, 1) are the three
vertices (1, 1), (1, 2) and (1, 3) defining an independent set that can be assigned with one color (orange), and
the three vertices (2, 0), (2, 2) and (2, 4) defining another independent set that can be assigned with one color
(green). The remaining edges of 𝐶(1, 1) can be assigned with the colors orange and green. Analogously for the
Hamiltonian cycles 𝐶(1, 2), 𝐶(1, 3) and 𝐶(1, 4), as in Figure 3. The remaining uncolored vertices (0, 0), (0, 2)
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Figure 5. A table composed by the elements of the guiding purple color in 𝐾3 ×𝐾5, and its
depiction using colors of the endvertices to identify the Hamiltonian cycles containing them.

and (0, 4) of Figure 3 represent an independent set that can be colored with the guiding color. Thus we can
easily obtain a 9-total coloring of 𝐾3 ×𝐾5 from the elements colored with the guiding color.

4. Graphs 𝐾𝑚 ×𝐾𝑛 are Type 1, for odd numbers 𝑚, 𝑛 ≥ 3 and 𝑚 < 13

In this section, we may sometimes omit the fact that 𝑚, 𝑛 are odd numbers and 𝑚, 𝑛 ≥ 3, since it is clear that
we are only concerned with complete graphs of odd order greater than 2. In each subsection, for each family
considered, we omit from the main text a finite number of particular graphs that are too small to satisfy the
described pattern. Please refer to the appendix for the omitted particular graphs. In Section 4.1, we apply the
guiding color technique presented in Section 3.2 to find three Type 1 infinite families of the direct product of
complete graphs: 𝐾3 ×𝐾𝑛, 𝐾5 ×𝐾𝑛 and 𝐾7 ×𝐾𝑛. Thus, for 𝑚 = 3, 5, 7 and 𝑛 ≥ 𝑚, first we give the elements
of the guiding color class when 𝑔𝑐𝑑(𝑚, 𝑛) = 1 and second when 𝑔𝑐𝑑(𝑚, 𝑛) ̸= 1. Particular graphs for families
𝐾3 ×𝐾𝑛, 𝐾5 ×𝐾𝑛, 𝐾7 ×𝐾𝑛 have the elements of the guiding color presented in the appendix in Section A.1.
In addition, in Section 4.2, we obtain two Type 1 infinite families: 𝐾9 × 𝐾𝑛 and 𝐾11 × 𝐾𝑛. Analogously to
Section 2, we use the result of Chew [7] and Lemma 2.1 to obtain that the family 𝐾9 ×𝐾𝑛, for 𝑛 ≥ 23, and
the family 𝐾11 × 𝐾𝑛, for 𝑛 ≥ 15, are both Type 1. For the particular graphs 𝐾9 × 𝐾𝑛, for 9 ≤ 𝑛 ≤ 21, and
𝐾11 × 𝐾𝑛, for 𝑛 = 11, 13, suitable Hamiltonian decompositions and the guiding color class are presented in
the appendix in Section A.2. In view of the above, this section establishes Theorem 4.1 which together with
previous Theorem 2.2 yields the proof that 𝐾𝑚 ×𝐾𝑛 is Type 1, except for 𝐾2 ×𝐾2.

Theorem 4.1. For odd numbers 𝑚, 𝑛 ≥ 3 with 𝑚 < 13, the graph 𝐾𝑚 ×𝐾𝑛 is Type 1.

4.1. Families 𝐾3 × 𝐾𝑛, 𝐾5 × 𝐾𝑛, 𝐾7 × 𝐾𝑛

In this subsection, we consider three Type 1 infinite families 𝐾𝑚 ×𝐾𝑛, for 𝑚 = 3, 5, 7 and 𝑛 > 𝑚 an odd
number. These families are divided into two cases: first, when 𝑔𝑐𝑑(𝑚, 𝑛) = 1 in Lemma 4.2 and second, when
𝑔𝑐𝑑(𝑚, 𝑛) = 𝑚 in Lemma 4.3.

Lemma 4.2. For 𝑚 = 3, 5, 7 and an odd number 𝑛 > 𝑚 with gcd(𝑚, 𝑛) = 1, the graph 𝐾𝑚 ×𝐾𝑛 is Type 1.

Proof. To obtain a (∆(𝐾𝑚×𝐾𝑛) + 1)-total coloring for the three infinite families 𝐾𝑚×𝐾𝑛 for 𝑚 = 3, 5, 7 and
𝑛 > 𝑚 an odd number with 𝑔𝑐𝑑(𝑚, 𝑛) = 1, first we use the Hamiltonian decomposition of 𝐾𝑚 ×𝐾𝑛 defined in
Section 3.1 Case 1 to construct the three tables respectively with the elements of the guiding color.

– For 𝑚 = 3. The general case for 𝐾3 × 𝐾𝑛, with 𝑛 ≥ 11 and 𝑔𝑐𝑑(3, 𝑛) = 1, is presented in Table 1. This
case 𝑚 = 3 has 2 particular graphs: 𝐾3 ×𝐾5 (solved in Sect. 3.2, see Fig. 5) and 𝐾3 ×𝐾7 presented in the
appendix in Section A.1.

– For 𝑚 = 5. The general case for 𝐾5 ×𝐾𝑛, with 𝑛 ≥ 17, 𝑛 ̸= 21 and 𝑔𝑐𝑑(5, 𝑛) = 1, is presented in Table 2.
This case 𝑚 = 5 has 5 particular graphs: for 𝑛 = 7, 9, 11, 13, 21 presented in the appendix in Section A.1.

– For 𝑚 = 7. The general case for 𝐾7×𝐾𝑛, with 𝑛 ≥ 23, 𝑛 ̸= 25, 33 and 𝑔𝑐𝑑(7, 𝑛) = 1, is presented in Table 3.
This case 𝑚 = 7 has 8 particular graphs: for 𝑛 = 9, 11, 13, 15, 17, 19, 25, 33 presented in the appendix in
Section A.1.
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Table 1. Elements of 𝐾3 ×𝐾𝑛 of the guiding color, for 𝑛 = 2𝑤 + 1, 𝑛 ≥ 11 and 𝑔𝑐𝑑(3, 𝑛) = 1.

Cycle Edges Cycle Edges

𝐶(1, 1) (1, 1)(2, 2), (1, 3)(2, 2𝑤 − 1), (1, 2𝑤 − 2)(2, 5) 𝐶(1, 4) (1, 0)(2, 4)
𝐶(1, 𝑖) (1, 𝑖)(2, 𝑖 + 1), 𝑖 = 2, 5, 6, . . . , 2𝑤 − 3, 2𝑤 − 1 𝐶(1, 2𝑤 − 2) (2, 0)(0, 2𝑤 − 2)
𝐶(1, 3) (0, 3)(1, 4) 𝐶(1, 2𝑤) (1, 2𝑤)(2, 1)

Vertices: (0, 𝑖), 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 3, 2𝑤 − 2

Table 2. Elements of 𝐾5 × 𝐾𝑛 of the guiding color, for 𝑛 = 2𝑤 + 1, 𝑛 ≥ 17, 𝑛 ̸= 21 and
𝑔𝑐𝑑(5, 𝑛) = 1.

Cycle Edges Cycle Edges

𝐶(1, 1) (2, 2)(4, 2𝑤), (2, 2𝑤 − 2)(4, 5), (2, 7)(4, 2𝑤 − 5) 𝐶(2, 1) (3, 2)(1, 2𝑤)
𝐶(1, 𝑖) (2, 𝑖 + 1)(4, 𝑖− 1), 𝑖 = 2, . . . , 2𝑤 − 1, 𝐶(2, 𝑖) (3, 𝑖 + 1)(1, 𝑖− 1), 𝑖 = 2, . . . , 2𝑤 − 1,

𝑖 ̸= 6, 2𝑤 − 4, 2𝑤 − 3 𝑖 ̸= 5, 2𝑤 − 5, 2𝑤 − 4
𝐶(1, 6) (0, 𝑤 + 6)(1, 0) 𝐶(2, 5) (4, 0)(0, 5)
𝐶(1, 2𝑤 − 4) (2, 0)(4, 2𝑤 − 4) 𝐶(2, 2𝑤 − 5) (3, 0)(1, 2𝑤 − 5)
𝐶(1, 2𝑤 − 3) (3, 2𝑤 − 4)(0, 2𝑤 − 1) 𝐶(2, 2𝑤 − 4) (0, 2𝑤 − 4)(2, 2𝑤 − 3)
𝐶(1, 2𝑤) (2, 1)(4, 2𝑤 − 1) 𝐶(2, 2𝑤) (3, 1)(1, 2𝑤 − 1), (3, 2𝑤 − 3)(1, 4),

(3, 6)(1, 2𝑤 − 6)
Vertices: (0, 𝑖), for 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 5, 𝑤 + 6, 2𝑤 − 4, 2𝑤 − 1

Thus, the family 𝐾𝑚 ×𝐾𝑛, with odd numbers 𝑚 = 3, 5, 7, 𝑛 > 𝑚 and 𝑔𝑐𝑑(𝑚, 𝑛) = 1, is Type 1. �

Lemma 4.3. For 𝑚 = 3, 5, 7 and an odd number 𝑛 ≥ 𝑚 with 𝑔𝑐𝑑(𝑚, 𝑛) = 𝑚, the graph 𝐾𝑚 ×𝐾𝑛 is Type 1.

Proof. Analogous to the proof of Lemma 4.2, to obtain a (∆(𝐾𝑚 × 𝐾𝑛) + 1)-total coloring for the families
𝐾𝑚 × 𝐾𝑛, when 𝑚 = 3, 5, 7, 𝑛 ≥ 𝑚 are odd numbers and 𝑔𝑐𝑑(𝑚, 𝑛) = 𝑚, first we use the Hamiltonian
decomposition of 𝐾𝑚 ×𝐾𝑛 as Section 3.1 Case 2 to construct the three tables respectively with the elements
of the guiding color.

– For 𝑚 = 3. First, we construct a Hamilton decomposition of 𝐾3 ×𝐾𝑛 as Section 3.1 Case 2(i). The general
case for 𝐾3 ×𝐾𝑛, with 𝑛 ≥ 9 and 𝑔𝑐𝑑(3, 𝑛) = 3, is presented in Table 4. This case 𝑚 = 3 has one particular
graph 𝐾3 ×𝐾3 presented in the appendix in Section A.1.

– For 𝑚 = 5. First, we construct a Hamilton decomposition of 𝐾5×𝐾𝑛 as Section 3.1 Case 2(ii). The general
case for 𝐾5×𝐾𝑛, with 𝑛 ≥ 15 and 𝑔𝑐𝑑(5, 𝑛) = 5, is presented in Table 5. This case 𝑚 = 5 has one particular
graph 𝐾5 ×𝐾5 presented in the appendix in Section A.1.

– For 𝑚 = 7. First we construct a Hamilton decomposition of 𝐾7×𝐾𝑛 as Section 3.1 Case 2(iii). The general
case for 𝐾7 ×𝐾𝑛, with 𝑛 ≥ 35 and 𝑔𝑐𝑑(7, 𝑛) = 7, is presented in Table 6. This case 𝑚 = 7 has 2 particular
graphs 𝐾7 ×𝐾7 and 𝐾7 ×𝐾21 presented in the appendix in Section A.1.

Thus, the family 𝐾𝑚 ×𝐾𝑛, with odd numbers 𝑚 = 3, 5, 7, 𝑛 > 𝑚 and 𝑔𝑐𝑑(𝑚, 𝑛) = 𝑚, is Type 1. �

4.2. Families 𝐾9 × 𝐾𝑛 and 𝐾11 × 𝐾𝑛

In Lemma 4.4, for odd numbers 𝑚 = 9, 11 and 𝑛 ≥ 𝑚, we establish that ∆(𝐾𝑚 × 𝐾𝑛) satisfies the lower
bound required by Chew [7], except for a finite number of graphs, which together with Lemma 2.1 implies the
desired total chromatic number. The desired total coloring of each one of these finitely many graphs is obtained
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Table 3. Elements of 𝐾7 ×𝐾𝑛 of the guiding color, for 𝑛 = 2𝑤 + 1, 𝑛 ≥ 23, 𝑛 ̸= 25, 33 and
𝑔𝑐𝑑(7, 𝑛) = 1.

Cycle Edges Cycle Edges

𝐶(1, 1) (6, 2𝑤)(3, 3), (6, 6)(3, 2𝑤 − 4), 𝐶(2, 2𝑤 − 8) (5, 0)(0, 2𝑤 − 8)
(6, 2𝑤 − 7)(3, 10)

𝐶(1, 𝑖) (6, 𝑖− 1)(3, 𝑖 + 2), 𝑖 = 2, . . . , 2𝑤 − 2, 𝐶(2, 2𝑤 − 1) (1, 2𝑤 − 2)(4, 1), (1, 4)(4, 2𝑤 − 6),
𝑖 ̸= 7, 8, 2𝑤 − 6 (1, 2𝑤 − 9)(4, 8)

𝐶(1, 7) (2, 0)(6, 7) 𝐶(2, 2𝑤) (1, 2𝑤 − 1)(4, 2)
𝐶(1, 8) (4, 7)(0, 10) 𝐶(3, 1) (2, 2𝑤)(5, 3)
𝐶(1, 2𝑤 − 6) (0, 𝑤 − 6)(1, 0) 𝐶(3, 𝑖) (2, 𝑖− 1)(5, 𝑖 + 2), 𝑖 = 2, . . . , 2𝑤 − 2,

𝑖 ̸= 6, 7, 2𝑤 − 7
𝐶(1, 2𝑤 − 1) (6, 2𝑤 − 2)(3, 1) 𝐶(3, 6) (4, 0)(2, 6)
𝐶(1, 2𝑤) (6, 2𝑤 − 1)(3, 2) 𝐶(3, 7) (0, 6)(3, 9)
𝐶(2, 1) (1, 2𝑤)(4, 3) 𝐶(3, 2𝑤 − 7) (6, 0)(0, 2𝑤 − 7)
𝐶(2, 𝑖) (1, 𝑖− 1)(4, 𝑖 + 2), 𝑖 = 2, . . . , 2𝑤 − 2, 𝐶(3, 2𝑤 − 1) (2, 2𝑤 − 2)(5, 1)

𝑖 ̸= 5, 6, 2𝑤 − 8
𝐶(2, 5) (3, 0)(1, 5) 𝐶(3, 2𝑤) (2, 2𝑤 − 1)(5, 2), (2, 5)(5, 2𝑤 − 5),

(2, 2𝑤 − 8)(5, 9)
𝐶(2, 6) (5, 8)(0, 4)

Vertices: (0, 𝑖), 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 4, 6, 10, 𝑤 − 6, 2𝑤 − 8, 2𝑤 − 7

Table 4. Elements of 𝐾3 ×𝐾𝑛 of the guiding color, for 𝑛 = 2𝑤 + 1, 𝑛 ≥ 9 and 𝑔𝑐𝑑(3, 𝑛) = 3.

Cycle Edges Cycle Edges

𝐶(1, 1) (1, 1)(2, 2), (1, 3)(2, 2𝑤 − 1), (1, 2𝑤 − 2)(2, 5) 𝐶(1, 𝑤 − 2) (2, 𝑤 − 1)(0, 𝑤 − 3)
𝐶(1, 𝑖) (1, 𝑖)(2, 𝑖 + 1), 𝐶(2, 𝑖) (2, 𝑤 + 𝑖 + 1)(1, 𝑤 + 𝑖),

𝑖 = 2, 5, 6, . . . , 𝑤 − 3, 𝑤 − 1, 𝑤 𝑖 = 1, . . . , 𝑤 − 3, 𝑤 − 1
𝐶(1, 3) (0, 3)(1, 4) 𝐶(2, 𝑤 − 2) (2, 0)(1, 𝑤 − 2)
𝐶(1, 4) (1, 0)(2, 4) 𝐶(2, 𝑤) (2, 1)(1, 2𝑤)

Vertices: (0, 𝑖), 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 3, 𝑤 − 3

Table 5. Elements of 𝐾5 ×𝐾𝑛 of the guiding color, for 𝑛 = 2𝑤 + 1, 𝑛 ≥ 15 and 𝑔𝑐𝑑(5, 𝑛) = 5.

Cycle Edges Cycle Edges

𝐶(1, 1) (2, 2)(4, 2𝑤), (2, 2𝑤 − 2)(4, 5), (2, 7)(4, 2𝑤 − 5) 𝐶(3, 𝑤 − 4) (3, 2𝑤 − 4)(2, 0)
𝐶(1, 𝑖) (2, 𝑖 + 1)(4, 𝑖− 1), 𝑖 = 2, . . . , 𝑤, 𝑖 ̸= 6 𝐶(3, 𝑤 − 3) (1, 0)(0, 𝑤 − 3)
𝐶(1, 6) (3, 0)(0, 6) 𝐶(3, 𝑤) (4, 2𝑤 − 1)(2, 1)
𝐶(2, 1) (3, 2)(1, 2𝑤) 𝐶(4, 𝑖) (1, 𝑤 + 𝑖− 1)(3, 𝑤 + 𝑖 + 1), 𝑖 = 1, . . . , 𝑤 − 1,

𝑖 ̸= 𝑤 − 5, 𝑤 − 4
𝐶(2, 𝑖) (3, 𝑖 + 1)(1, 𝑖− 1), 𝑖 = 2, . . . , 𝑤, 𝑖 ̸= 5 𝐶(4, 𝑤 − 5) (4, 2𝑤 − 4)(1, 2𝑤 − 5)
𝐶(2, 5) (4, 0)(0, 5) 𝐶(4, 𝑤 − 4) (2, 2𝑤 − 3)(0, 2𝑤 − 4)
𝐶(3, 𝑖) (4, 𝑤 + 𝑖− 1)(2, 𝑤 + 𝑖 + 1), 𝑖 = 1, . . . , 𝑤 − 1, 𝐶(4, 𝑤) (1, 2𝑤 − 6)(3, 6), (1, 4)(3, 2𝑤 − 3),

𝑖 ̸= 𝑤 − 4, 𝑤 − 3 (1, 2𝑤 − 1)(3, 1)
Vertices: (0, 𝑖), 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 5, 6, 𝑤 − 3, 2𝑤 − 4
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Table 6. Elements of 𝐾7 ×𝐾𝑛 of the guiding color, for 𝑛 = 2𝑤 + 1, 𝑛 ≥ 35 and 𝑔𝑐𝑑(7, 𝑛) = 7.

Cycle Edges Cycle Edges

𝐶(1, 1) (6, 2𝑤)(3, 3), (6, 6)(3, 2𝑤 − 4), 𝐶(4, 𝑖) (3, 𝑤 + 𝑖 + 2)(6, 𝑤 + 𝑖− 1), 𝑖 = 1, . . . , 𝑤 − 2,
(6, 2𝑤 − 7)(3, 10) 𝑖 ̸= 𝑤 − 6

𝐶(1, 𝑖) (6, 𝑖− 1)(3, 𝑖 + 2), 𝑖 = 2, . . . , 𝑤, 𝐶(4, 𝑤 − 6) (1, 0)(0, 𝑤 − 6)
𝑖 ̸= 7, 8

𝐶(1, 7) (2, 0)(6, 7) 𝐶(4, 𝑤 − 1) (3, 1)(6, 2𝑤 − 2)
𝐶(1, 8) (4, 7)(0, 10) 𝐶(4, 𝑤) (3, 2)(6, 2𝑤 − 1)
𝐶(2, 1) (1, 2𝑤)(4, 3) 𝐶(5, 𝑖) (4, 𝑤 + 𝑖 + 2)(1, 𝑤 + 𝑖− 1), 𝑖 = 1, . . . , 𝑤 − 2,

𝑖 ̸= 𝑤 − 8
𝐶(2, 𝑖) (1, 𝑖− 1)(4, 𝑖 + 2), 𝑖 = 2, . . . , 𝑤, 𝐶(5, 𝑤 − 8) (0, 2𝑤 − 8)(6, 0)

𝑖 ̸= 5, 6
𝐶(2, 5) (3, 0)(1, 5) 𝐶(5, 𝑤 − 1) (4, 8)(1, 2𝑤 − 9), (4, 2𝑤 − 6)(1, 4),

(4, 1)(1, 2𝑤 − 2)
𝐶(2, 6) (5, 8)(0, 4) 𝐶(5, 𝑤) (4, 2)(1, 2𝑤 − 1)
𝐶(3, 1) (2, 2𝑤)(5, 3) 𝐶(6, 𝑖) (5, 𝑤 + 𝑖 + 2)(2, 𝑤 + 𝑖− 1), 𝑖 = 1, . . . , 𝑤 − 2,

𝑖 ̸= 𝑤 − 7
𝐶(3, 𝑖) (2, 𝑖− 1)(5, 𝑖 + 2), 𝑖 = 2, . . . , 𝑤, 𝐶(6, 𝑤 − 7) (0, 2𝑤 − 7)(5, 0)

𝑖 ̸= 6, 7
𝐶(3, 6) (4, 0)(2, 6) 𝐶(6, 𝑤 − 1) (5, 1)(2, 2𝑤 − 2)
𝐶(3, 7) (0, 6)(3, 9) 𝐶(6, 𝑤) (5, 9)(2, 2𝑤 − 8), (5, 2𝑤 − 5)(2, 5),

(5, 2)(2, 2𝑤 − 1)
Vertices: (0, 𝑖), 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 4, 6, 10, 𝑤 − 6, 2𝑤 − 8, 2𝑤 − 7

by the guiding color technique. We present in the appendix in Section A.2 their respective guiding colors and
Hamiltonian decompositions since they are not given in Section 3.1.

Lemma 4.4. For 𝑚 = 9, 11 and an odd number 𝑛 ≥ 𝑚, the graph 𝐾𝑚 ×𝐾𝑛 is Type 1.

Proof. In Section 2, we have actually proved that for odd numbers 𝑚, 𝑛 the graph 𝐾𝑚×𝐾𝑛 is Type 1, provided
that ∆(𝐺) ≥ (

√
37−1)
6 |𝑉 (𝐺)|.

We show next that 𝐾9 ×𝐾𝑛 with 𝑛 ≥ 23 and 𝐾11 ×𝐾𝑛 with 𝑛 ≥ 15 satisfy the required bound. Indeed, for
𝐾9 × 𝐾𝑛, when 𝑛 ≥ 23, we have that 𝑛 ≥ 16/(16 − 3(

√
37 − 1)). Therefore, 8(𝑛 − 1) ≥ (

√
37−1)
6 · 9𝑛, that is

∆(𝐾9 ×𝐾𝑛) ≥ (
√

37−1)
6 · | 𝑉 (𝐾9 ×𝐾𝑛) |. For 𝐾11 ×𝐾𝑛, when 𝑛 ≥ 15, we have that 𝑛 ≥ 60/(60− 11(

√
37− 1)).

Therefore, 10(𝑛− 1) ≥ (
√

37−1)
6 · 11𝑛, that is ∆(𝐾11 ×𝐾𝑛) ≥ (

√
37−1)
6 · | 𝑉 (𝐾11 ×𝐾𝑛) |. Thus, we have that for

𝑛 ≥ 23, the graph 𝐾9 ×𝐾𝑛 is Type 1 and for 𝑛 ≥ 15, the graph 𝐾11 ×𝐾𝑛 is Type 1.
Particular graphs are 𝐾9×𝐾𝑛, for 𝑛 = 9, 11, 13, 15, 17, 19, 21, and 𝐾11×𝐾𝑛, for 𝑛 = 11, 13. These particular

graphs are presented in the appendix in Section A.2. �

5. Total chromatic number of 𝐶𝑚 ×𝐾𝑛

In the sections above, we ensured that the direct product of complete graphs 𝐾𝑚 ×𝐾𝑛 is Type 1, except for
𝐾2 ×𝐾2. We already know that the direct product of cycles 𝐶𝑚 ×𝐶𝑛 is Type 1, except for 𝐶4 ×𝐶4 [4]. In this
section, we investigate the direct product of a cycle with a complete graph 𝐶𝑚 × 𝐾𝑛, for 𝑚 ≥ 3 and 𝑛 ≥ 2.
Interestingly, we have a Type 2 infinite family 𝐶𝑚 ×𝐾𝑛, when 𝑚 is not a multiple of 3 and 𝑛 = 2.

In Section 5.1, we distinguish the particular cases that are solved by previous results, among them we are
able to classify all 𝐶𝑚 ×𝐾𝑛, when 𝑚 is even. In Section 5.2, we use our Hamiltonian decomposition and the
guiding color technique to obtain new Type 1 infinite families, so that we classified all 𝐶𝑚×𝐾𝑛, when 𝑚 is odd
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and 𝑛 is even, and additional Type 1 infinite families 𝐶𝑡(2𝑛−1) ×𝐾𝑛, for 𝑡 ≥ 1, when 𝑛 is odd. Based on the
evidence found so far, we conjecture that 𝐶𝑚 ×𝐾𝑛 is Type 2 if and only if 𝑚 is not a multiple of 3 and 𝑛 = 2.

5.1. Previous results classify some infinite families of 𝐶𝑚 × 𝐾𝑛

In addition to the results presented in this work, in Propositions 5.1 and 5.2, we shall use that, except for
𝐶4 × 𝐶4, all direct product of cycle graphs 𝐶𝑚 × 𝐶𝑛 are Type 1 [4]; and that if 𝐺 × 𝐾2 is Type 1 and 𝐻 is
bipartite, then 𝐺×𝐻 is Type 1 [10].

Proposition 5.1. Let 𝑚 ≥ 3 and 𝑛 = 2, 3. The graph 𝐶𝑚 ×𝐾𝑛 is Type 2, when 𝑚 is not a multiple of 3 and
𝑛 = 2, otherwise the graph is Type 1.

Proof. First, consider 𝐶𝑚 ×𝐾𝑛 when 𝑛 = 2. If 𝑚 is odd, then 𝐶𝑚 ×𝐾2 = 𝐶2𝑚, and otherwise if 𝑚 is even,
then 𝐶𝑚 ×𝐾2 = 2𝐶𝑚. Cycle graphs are well known to be Type 1 if the size of the cycle is a multiple of 3 and
Type 2, otherwise. Therefore, 𝐶𝑚 ×𝐾2 is Type 1 if 𝑚 is a multiple of 3 and Type 2, otherwise.

Now, consider 𝐶𝑚 ×𝐾𝑛, when 𝑛 = 3. Since 𝐶𝑚 ×𝐾3 = 𝐶𝑚 × 𝐶3, they are all Type 1 by Castonguay et al.
[4]. �

Proposition 5.2. For 𝑚 = 3 and 𝑛 ≥ 2, and for even 𝑚 and 𝑛 ≥ 3, the graph 𝐶𝑚 ×𝐾𝑛 is Type 1.

Proof. First, consider 𝐶3×𝐾𝑛. Since 𝐶3×𝐾𝑛 = 𝐾3×𝐾𝑛, we have by sections above that they are all Type 1.
Now, consider 𝐶𝑚 ×𝐾𝑛, when 𝑚 is even and 𝑛 ≥ 3. Mackeigan and Janssen [10] proved that if 𝐺 ×𝐾2 is

Type 1, then 𝐺×𝐻 is also Type 1, for any bipartite graph 𝐻. When 𝑛 ≥ 3, the graph 𝐾𝑛×𝐾2 is the complete
bipartite graph 𝐾𝑛,𝑛 minus a perfect matching, and Yap [14] proved that this graph is Type 1. Since when 𝑚
is even 𝐶𝑚 is a bipartite graph, and 𝐾𝑛×𝐶𝑚 is isomorphic to 𝐶𝑚×𝐾𝑛, we have that 𝐶𝑚×𝐾𝑛 is Type 1. �

5.2. Additional new infinite families of 𝐶𝑚 × 𝐾𝑛 are Type 1

In this subsection, we advance on the results in total coloring of 𝐶𝑚 × 𝐾𝑛, by obtaining additional new
infinite families that are Type 1 and are not solved by previous results. In Theorem 5.3, we use Hamiltonian
decompositions of 𝐶𝑚 ×𝐾𝑛 to construct a (2𝑛 − 1)-total coloring based on total-colorings and edge-colorings
of the subgraphs of this decomposition.

Theorem 5.3. For odd 𝑚 ≥ 5 and even 𝑛 ≥ 4, the graph 𝐶𝑚 ×𝐾𝑛 is Type 1.

Proof. First, we consider 𝐶𝑚 ×𝐾𝑛, when 𝑚 ̸= 7.
As 𝐶𝑚 is a unique Hamiltonian cycle, for sake of simplicity, we consider the sequential order of 𝐶𝑚 =

⟨0, 1, 2, 3, . . . ,𝑚 − 1, 0⟩. We consider the Walecki’s Hamiltonian decomposition of the complete graph 𝐾𝑛 as
described in Section 3.1, however for an even number 𝑛 = 2𝑤 ≥ 4. Following the notation used in [1], let
𝐶𝑛 be the Hamiltonian cycle ⟨0, 1, 2, 2𝑤 − 1, 3, 2𝑤 − 2, 4, 2𝑤 − 3, . . . , 𝑤 − 1, 𝑤 + 2, 𝑤, 𝑤 + 1, 0⟩. As 𝜎 is the
permutation (0)(1, 2, 3, 4, . . . , 2𝑤 − 2, 2𝑤 − 1), then 𝜎0(𝐶𝑛), 𝜎1(𝐶𝑛), 𝜎2(𝐶𝑛), . . . , 𝜎𝑤−2(𝐶𝑛) are (𝑤 − 1) edge-
disjoint Hamiltonian cycles. The remaining edges {(0)(𝑤), (𝑤− 1)(𝑤 + 1), (𝑤− 2)(𝑤 + 2), . . . , (1)(2𝑤− 1)} form
a perfect matching 𝑀 . Observe that 𝜎0(𝐶𝑛) = 𝐶𝑛. For an even 𝑛 ≥ 4, we write the Hamiltonian decomposition
𝐾𝑛 = (

⨁︀𝑤−1
𝑖=1 𝜎𝑖−1(𝐶𝑛))⊕𝑀 . Recall that we denote by 𝜎𝑡(𝐶𝑛)𝑧, with 𝑧 = 0, 1, . . . , 𝑛− 1 the 𝑧th-vertex in the

cycle 𝜎𝑡(𝐶𝑛).
Observe that the spanning subgraphs of this Hamiltonian decomposition are edge-disjoint and thus, we may

write that 𝐶𝑚 ×𝐾𝑛 = (
⨁︀𝑤−1

𝑖=1 (𝐶𝑚 × 𝜎𝑖−1(𝐶𝑛)))⊕ (𝐶𝑚 ×𝑀).
Since 𝑛 is even, the subgraph 𝐶𝑚 × 𝜎𝑖−1(𝐶𝑛) is a bipartite 4-regular graph and has a 4-edge coloring. In

addition, the subgraph 𝐶𝑚 × 𝜎𝑖−1(𝐶𝑛) has a 5-total coloring [4]. On the other hand, 𝐶𝑚 × 𝑀 is a 2-regular
graph isomorphic to a disjoint union of 𝑛/2 cycles of order 2𝑚 and therefore, has a 2-edge coloring.

In order to construct a (2𝑛 − 1)-total coloring of 𝐶𝑚 × 𝐾𝑛, first we assign 5 colors to all the vertices of
𝐶𝑚×𝐾𝑛. In this sense, consider the 5-total coloring of 𝐶𝑚×𝜎0(𝐶𝑛), for 𝑚 ̸= 7, described in [4] (see an example
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Table 7. A 7-total coloring of 𝐶7 × (𝜎0(𝐶𝑛)⊕𝑀).

Color Vertices Edges

1 (pink) 𝐼0 𝑁1, 𝑁3, 𝑁5

2 (green) 𝐼1 𝑁2, 𝑁4, 𝑁6

3 (dark blue) 𝐼2 𝑁0, 𝑁
′
3, 𝑁

′
5

4 (yellow) 𝐼3 𝑁 ′
1, 𝑁

′
4, 𝑁

′
6

5 (orange) 𝐼4 𝑁 ′
0, 𝑁

′
2, 𝑀5

6 (light blue) 𝐼5 𝑀1, 𝑀3, 𝑀6

7 (wine) 𝐼6 𝑀0, 𝑀2, 𝑀4

in Fig. 6). In this total coloring, two vertices of the same color (𝑢, 𝑣) and (𝑢′, 𝑣′) in 𝐶𝑚 × 𝜎0(𝐶𝑛) are such that
𝑢𝑢′ /∈ 𝐸(𝐶𝑚), thus (𝑢, 𝑣)(𝑢′, 𝑣′) /∈ 𝐸(𝐶𝑚 × 𝐾𝑛). Therefore, the 5-vertex coloring of 𝐶𝑚 × 𝜎0(𝐶𝑛) induced by
this 5-total coloring still is a 5-vertex coloring of 𝐶𝑚 ×𝐾𝑛.

To obtain the desired total coloring of 𝐶𝑚 × 𝐾𝑛, we still need to assign 2𝑛 − 1 colors to all the edges of
𝐶𝑚×𝐾𝑛, such that we have no conflict with the 5 colors already assigned to the vertices. For this, we continue
to assign the same 5 colors, used to color the vertices, for the edges from the 5-total coloring of the subgraph
𝐶𝑚 × 𝜎0(𝐶𝑛). In addition, for the remaining edges, we consider a 2(𝑛 − 4)-edge coloring composed of 4-edge
colorings of each of the other (𝑤− 2) subgraphs 𝐶𝑚× 𝜎𝑖−1(𝐶𝑛), for 𝑖 = 2, . . . , 𝑤− 1 (see an example in Fig. 7),
and a 2-edge coloring of the subgraph 𝐶𝑚 ×𝑀 (see an example in Fig. 8).

Unfortunately, the 5-total coloring of 𝐶7×𝜎0(𝐶𝑛) given in [4] does not induce a 5-vertex coloring of 𝐶7×𝐾𝑛.
In this case, we consider 𝐶7 × 𝐾𝑛 = (

⨁︀𝑤−1
𝑖=2 (𝐶7 × 𝜎𝑖−1(𝐶𝑛))) ⊕ (𝐶7 × (𝜎0(𝐶𝑛) ⊕ 𝑀)). We use the spanning

6-regular subgraph 𝐶7 × (𝜎0(𝐶𝑛) ⊕𝑀) to obtain a 7-vertex coloring of 𝐶𝑚 ×𝐾𝑛 from the 7-total coloring of
𝐶7 × (𝜎0(𝐶𝑛)⊕𝑀) described in Table 7.

Recall that 𝐶7 = ⟨0, 1, 2, 3, 4, 5, 6, 0⟩. For 𝑖 = 0, . . . , 6, denote by 𝐼𝑖 = {(𝑖, 𝑗) | 𝑗 = 0, . . . , 𝑛−1} an independent
set. Observe that, in 𝐶7× (𝜎0(𝐶𝑛)⊕𝑀), we have three perfect matchings 𝑁𝑖, 𝑁 ′

𝑖 and 𝑀𝑖 between independent
sets 𝐼𝑖 and 𝐼𝑖+1. The two perfect matchings 𝑁𝑖 and 𝑁 ′

𝑖 come from 𝐶𝑛 and the perfect matching 𝑀𝑖 comes from
𝑀 .

In order to construct a (2𝑛− 1)-total coloring of 𝐶7 ×𝐾𝑛, first we assign 7 colors to all vertices of 𝐶7 ×𝐾𝑛.
In this sense, consider the 7-total coloring of 𝐶7 × (𝜎0(𝐶𝑛)⊕𝑀) as Table 7 (see an example in Fig. 9). In this
total coloring, two vertices of the same color (𝑢, 𝑣) and (𝑢′, 𝑣′) in 𝐶7× (𝜎0(𝐶𝑛)⊕𝑀) are such that 𝑢𝑢′ /∈ 𝐸(𝐶7),
thus (𝑢, 𝑣)(𝑢′, 𝑣′) /∈ 𝐸(𝐶7 ×𝐾𝑛). Therefore, the 7-vertex coloring of 𝐶7 × (𝜎0(𝐶𝑛)⊕𝑀) induced by this 7-total
coloring still is a 7-vertex coloring of 𝐶7 ×𝐾𝑛. To obtain the desired total coloring of 𝐶7 ×𝐾𝑛, we still need to
assign 2𝑛− 1 colors to all the edges of 𝐶7×𝐾𝑛. For this, we continue to assign the same 7 colors, used to color
the vertices, for the edges from the 7-total coloring of the subgraph 𝐶7 × (𝜎0(𝐶𝑛) ⊕𝑀). In addition, for the
remaining edges, we consider a 2(𝑛− 4)-edge coloring composed of 4-edge colorings of each of the other (𝑤− 2)
subgraphs 𝐶7 × 𝜎𝑖−1(𝐶𝑛), for 𝑖 = 2, . . . , 𝑤 − 1. �

For instance, consider 𝐶5×𝐾6 and the Walecki’s Hamiltonian decomposition of 𝐾6 = (
⨁︀2

𝑖=1 𝜎𝑖−1(𝐶6))⊕𝑀 ,
where the two cycles are 𝜎0(𝐶6) = ⟨0, 1, 2, 5, 3, 4, 0⟩ and 𝜎1(𝐶6) = ⟨0, 2, 3, 1, 4, 5, 0⟩, and the matching is 𝑀 =
{(0)(3), (2)(4), (1)(5)}. Therefore, 𝐶5 × 𝐾6 = (

⨁︀2
𝑖=1(𝐶5 × 𝜎𝑖−1(𝐶6))) ⊕ (𝐶5 × 𝑀). We present the 11-total

coloring of 𝐶5 × 𝐾6 described in Figures 6–8. In Figure 6, we assign 5 colors to the vertices of 𝐶5 × 𝐾6 and
the same 5 colors to the edges of the subgraph 𝐶5 × 𝜎0(𝐶6). In Figure 7, we present a 4-edge coloring of the
subgraph 𝐶5 × 𝜎1(𝐶6). In Figure 8, we present a 2-edge coloring of the subgraph 𝐶5 × 𝑀 . Observe that, in
Figures 6–8, the order of second coordinates obey the Walecki’s Hamiltonian decomposition of 𝐾6.

When 𝑚 = 7, for instance consider 𝐶7 × 𝐾4. As the Hamiltonian decomposition of 𝐾4 has a unique cycle
and one matching, we only consider the 7-total coloring of 𝐶7 ×𝐾4, given by Table 7 when 𝑛 = 4, as depicted
in Figure 9.
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Figure 6. A depiction of the 5-total coloring of a subgraph 𝐶5 × 𝜎0(𝐶6).

Figure 7. A depiction of the 4-edge coloring of the subgraph 𝐶5 × 𝜎1(𝐶6).

Figure 8. A depiction of the 2-edge coloring of the subgraph 𝐶5 ×𝑀 .
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Figure 9. A depiction of a 7-total coloring of 𝐶7 ×𝐾4, corresponding to Table 7.

It remains to determine the total chromatic number of 𝐶𝑚 ×𝐾𝑛 when both 𝑚, 𝑛 ≥ 5 are odd numbers.
It is known that if 𝐺 and 𝐻 are two regular graphs, then in case 𝐺 is conformable, the graph 𝐺 × 𝐻 is

conformable [4] as well. It is known that 𝐾𝑛 is conformable as this graph is Type 1 for 𝑛 odd. Thus, 𝐶𝑚 ×𝐾𝑛

is conformable.
Unfortunately, although the graph is conformable of odd order, the lower bound ∆(𝐺) ≥ (

√
37−1)
6 |𝑉 (𝐺)| used

in Section 2 [7] is not useful for the class 𝐶𝑚×𝐾𝑛. Recall that |𝑉 (𝐶𝑚×𝐾𝑛)| = 𝑚𝑛 and ∆(𝐶𝑚×𝐾𝑛) = 2𝑛− 2.
Indeed, (

√
37−1)
6 ·𝑚𝑛 ≥ (

√
37−1)
6 · 5𝑛 > 4𝑛 > 2𝑛− 2.

However, in Theorem 5.4, we present an infinite family using the guiding color technique to obtain a Type 1
total coloring.

Theorem 5.4. For 𝑚 = 2𝑛− 1 and odd 𝑛 ≥ 5, the graph 𝐶𝑚 ×𝐾𝑛 is Type 1.

Proof. In order to obtain a (2𝑛 − 1)-total coloring, we use the technique of the guiding color. First, consider
𝑛 = 2𝑤+1 and the Walecki’s Hamiltonian decomposition of 𝐾𝑛 =

⨁︀𝑤
𝑖=1 𝜎𝑖−1(𝐶𝑛) as described in Section 3.1 and

write 𝐶𝑚 = ⟨0, 1, 2, 3, . . . ,𝑚− 1⟩. We have that 𝐶𝑚×𝐾𝑛 =
⨁︀𝑤

𝑖=1(𝐶𝑚×𝜎𝑖−1(𝐶𝑛)), where each subgraph 𝐶𝑚×
𝜎𝑖−1(𝐶𝑛) is a 4-regular graph and has two Hamiltonian cycles. As 𝑔𝑐𝑑(𝑚, 𝑛) = 1 and 𝑛−1 = 2𝑤, denote the 𝑛−1
Hamiltonian cycles by 𝐶(1, 𝑖) = ⟨𝐶(1, 𝑖)𝑧⟩, for 𝑖 = 1, . . . , 𝑛−1, where 𝐶(1, 𝑖)𝑧 = ((𝐶𝑚)𝑧 mod 𝑚, 𝜎𝑖−1(𝐶𝑛)𝑧 mod 𝑛),
with 𝑧 = 0, . . . ,𝑚𝑛. Consider {𝐶(1, 𝑖) | 𝑖 = 1, . . . , 𝑛 − 1} a Hamiltonian decomposition of 𝐶𝑚 × 𝐾𝑛. For
𝑖 = 1, . . . , 𝑤, note that 𝐶(1, 𝑖) and 𝐶(1, 𝑖 + 𝑤) are two Hamiltonian cycles of the subgraph 𝐶𝑚 × 𝜎𝑖−1(𝐶𝑛).

Recall that, as each Hamiltonian cycle has an odd number of edges 𝑚𝑛, each cycle admits a 3-edge coloring
where an odd number of edges are colored by the guiding color. For 𝑖 = 1, . . . , 𝑛 − 1, each Hamiltonian cycle
𝐶(1, 𝑖) has 𝑛 edges of the guiding color, where these edges have first coordinate 2𝑖− 1 or 2𝑖, and additional two
colors with (𝑚𝑛−𝑛)/2 edges for each color. Note that, in the graph 𝐶𝑚×𝐾𝑛, there are 𝑛(𝑛−1) edges assigned
with the guiding color. Since 𝑚 = 2𝑛− 1, we have that 𝑛(𝑛− 1) = (𝑚𝑛− 𝑛)/2. Therefore each color, including
the guiding color, are assigned to the same amount of edges.

On the other hand, there are 𝑛 vertices with the same first coordinates, therefore we have two independent
sets, each of them with 𝑛 vertices of the same color. In this way, note that we assigned 2𝑛 − 2 colors to the
vertices with first coordinates from 1 to 2𝑛 − 2. As 𝑚 = 2𝑛 − 1, the remaining 𝑛 uncolored vertices with first
coordinates 0 can be colored with the guiding color. �
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Table 8. A table composed by the elements of the guiding purple color in 𝐶9 ×𝐾5.

Elements of 𝐶9 ×𝐾5 of the guiding color

𝐶(1, 1) (1, 1)(2, 2), (1, 0)(2, 1), (1, 3)(2, 0), (1, 4)(2, 3), (1, 2)(2, 4)
𝐶(1, 2) (3, 1)(4, 4), (3, 3)(4, 1), (3, 2)(4, 3), (3, 0)(4, 2), (3, 4)(4, 0)
𝐶(1, 3) (5, 0)(6, 3), (5, 1)(6, 0), (5, 2)(6, 1), (5, 4)(6, 2), (5, 3)(6, 4)
𝐶(1, 4) (7, 1)(8, 3), (7, 4)(8, 1), (7, 0)(8, 4), (7, 2)(8, 0), (7, 3)(8, 2)

Vertices: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4)

Figure 10. A depiction of the elements of the guiding color using colors of the endvertices to
identify the Hamiltonian cycles containing them, corresponding to Table 8.

As an example of the (2𝑛−1)-total coloring obtained in Theorem 5.4, consider the 9-total coloring of 𝐶9×𝐾5

presented in Table 8 and the corresponding Figure 10. Note that Table 8 and Figure 10 are similar to Figure 5,
where we presented in the same figure the elements of the guiding color and the corresponding 9-vertex coloring.
Observe that, in both figures, each two colors used for the endvertices of the edges of the guiding color identify
the same 2 colors assigned to the remaining edges of the Hamiltonian cycle containing the respective edges of
the guiding color.

In fact, we can use known merge techniques, as used in [4], to find additional Type 1 infinite families, for
instance, the graph 𝐶𝑡(2𝑛−1) ×𝐾𝑛, for 𝑡 ≥ 2, where we merge 𝑡 copies of the graph 𝐶2𝑛−1 ×𝐾𝑛, when 𝑛 ≥ 5 is
odd, without conflict of vertices and edges. We conjecture that graphs 𝐶𝑚 ×𝐾𝑛, with odd numbers 𝑚, 𝑛 ≥ 5,
are Type 1. Thus, the provided evidence leads us to conjecture that the only direct product of a cycle with a
complete graph that are Type 2 are the ones given by Proposition 5.1.

Conjecture 5.5. The graph 𝐶𝑚 ×𝐾𝑛 is Type 2 if and only if 𝑚 is not a multiple of 3 and 𝑛 = 2.



1624 D. CASTONGUAY ET AL.

Table A.1. Elements of particular graph 𝐾3 ×𝐾7 of the guiding color.

Cycle Edges Cycle Edges Cycle Edges

𝐶(1, 1) (1, 1)(2, 2), (1, 3)(2, 5), (1, 0)(2, 1) 𝐶(1, 3) (1, 6)(2, 0) 𝐶(1, 5) (1, 5)(2, 6)
𝐶(1, 2) (1, 2)(2, 3) 𝐶(1, 4) (0, 0)(1, 4) 𝐶(1, 6) (2, 4)(0, 3)

Vertices: (0, 𝑖) for 𝑖 = 1, 2, 4, 5, 6

Figure A.1. A depiction of particular graph 𝐾3 ×𝐾3 with 5 colors.

Appendix A.

A.1. Elements of the guiding color of particular graphs for families 𝐾3 × 𝐾𝑛, 𝐾5 × 𝐾𝑛,
𝐾7 × 𝐾𝑛

Please refer to Table A.1 of particular graph 𝐾3 × 𝐾7; to Table A.2 of particular graphs 𝐾5 × 𝐾𝑛, for
𝑛 = 5, 7, 9, 11, 13, 21; to Table A.3 of particular graphs 𝐾7 ×𝐾𝑛, for 𝑛 = 9, 11, 13, 15, 17; and to Table A.4 of
particular graphs 𝐾7 ×𝐾𝑛, for 𝑛 = 19, 25, 33 according to Lemma 4.2.

Please refer to Figure A.1 which depicts the particular graph 𝐾3×𝐾3 with 5 colors; to Table A.5 of particular
graph 𝐾5 × 𝐾5; to Table A.6 of particular graph 𝐾7 × 𝐾7; and to Table A.7 of particular graph 𝐾7 × 𝐾21

according to Lemma 4.3.

A.2. Hamiltonian decomposition of particular graphs 𝐾9 × 𝐾𝑛 and 𝐾11 × 𝐾𝑛, and the
elements of the guiding color

Consider the particular graphs 𝐾9 × 𝐾𝑛 with 𝑛 = 9, 11, 13, 15, 17, 19, 21 and 𝐾11 × 𝐾𝑛 with 𝑛 = 11, 13,
according to Lemma 4.4. First, we present each Hamiltonian decomposition. Second, refer to the following tables
containing the elements of the guiding color: to Table A.8 of particular graphs 𝐾9 ×𝐾𝑛, for 𝑛 = 11, 13, 17, 19;
to Table A.9 of particular graphs 𝐾9 ×𝐾𝑛, for 𝑛 = 9, 15, 21; to Table A.10 of particular graph 𝐾11 ×𝐾11; and
to Table A.11 of particular graph 𝐾11 ×𝐾13.

In order to present the Hamiltonian decompositions when 𝑔𝑐𝑑(9, 𝑛) = 1 and when 𝑔𝑐𝑑(11, 𝑛) = 1, we can
proceed analogously to Section 3.1 Case 1.

We present next five Hamiltonian decompositions to deal with 𝑔𝑐𝑑(9, 𝑛) ̸= 1 and 𝑔𝑐𝑑(11, 𝑛) ̸= 1. Let
𝑚 and 𝑛 odd numbers such that 𝑔𝑐𝑑(𝑚, 𝑛) = 𝑑 ̸= 1. Recall that we have defined the following paths of
𝐾𝑚 × 𝐾𝑛. For 𝑗 = 1, . . . ,𝑚 − 1, 𝑖 = 1, . . . , 𝑛 − 1 and 𝑘 = 0, . . . , 𝑑 − 1, the path 𝑃 (𝑗, 𝑖)𝑘 is induced by
(𝜎𝑗−1(𝐶𝑚)(𝑡+𝑘) mod 𝑚; 𝜎𝑖−1(𝐶𝑛)𝑧 mod 𝑛), with 𝑧 = 0, . . . , 𝑚𝑛

𝑑 − 1.

– For 𝐾9 ×𝐾9, a Hamiltonian decomposition is given by {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 8, 𝑖 = 1, . . . , 4}, where:

𝐶(𝑗, 𝑖) =
⟨︀
𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)7, 𝑃 (𝑗, 𝑖)5, 𝑃 (𝑗, 𝑖)3, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)8, 𝑃 (𝑗, 𝑖)6, 𝑃 (𝑗, 𝑖)4, 𝑃 (𝑗, 𝑖)2, (0, 0)

⟩︀
.

Observe that, for 𝑗 = 1, 2, 3, 4 and 𝑖 = 1, . . . , 4, the cycles 𝐶(𝑗, 𝑖) and 𝐶(𝑗 + 4, 𝑖) form a Hamiltonian
decomposition of 𝜎𝑗−1(𝐶9)× 𝜎𝑖−1(𝐶9).
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Table A.2. Elements of particular graphs 𝐾5 ×𝐾𝑛 of the guiding color, for 𝑛 = 7, 9, 11, 13, 21.

Cycle Edges Cycle Edges
Elements of 𝐾5 ×𝐾7 of the guiding color

𝐶(1, 1) (2, 2)(4, 6), (2, 0)(4, 1), (2, 5)(4, 4) 𝐶(2, 1) (0, 2)(2, 6)
𝐶(1, 2) (1, 2)(2, 3) 𝐶(2, 2) (3, 3)(1, 1)
𝐶(1, 3) (2, 4)(4, 2) 𝐶(2, 3) (1, 0)(4, 3)
𝐶(1, 4) (3, 5)(0, 3) 𝐶(2, 4) (4, 0)(0, 4)
𝐶(1, 5) (3, 2)(0, 0) 𝐶(2, 5) (3, 6)(1, 4)
𝐶(1, 6) (2, 1)(4, 5) 𝐶(2, 6) (3, 1)(1, 5), (3, 0)(1, 6), (3, 4)(1, 3)

Vertices: (0, 1), (0, 5), (0, 6)
Elements of 𝐾5 ×𝐾9 of the guiding color

𝐶(1, 1) (2, 2)(4, 8), (2, 6)(4, 5), (2, 8)(4, 3) 𝐶(2, 1) (3, 2)(1, 8)
𝐶(1, 2) (2, 3)(4, 1) 𝐶(2, 2) (3, 3)(1, 1)
𝐶(1, 3) (2, 4)(4, 2) 𝐶(2, 3) (0, 8)(2, 7)
𝐶(1, 4) (2, 0)(4, 4) 𝐶(2, 4) (0, 4)(2, 5)
𝐶(1, 5) (0, 7)(1, 3) 𝐶(2, 5) (3, 0)(1, 5)
𝐶(1, 6) (4, 0)(3, 6) 𝐶(2, 6) (1, 0)(4, 6)
𝐶(1, 7) (3, 4)(0, 3) 𝐶(2, 7) (3, 8)(1, 6)
𝐶(1, 8) (2, 1)(4, 7) 𝐶(2, 8) (3, 1)(1, 7), (3, 5)(1, 4), (3, 7)(1, 2)

Vertices: (0, 𝑖), for 𝑖 = 0, 1, 2, 5, 6
Elements of 𝐾5 ×𝐾11 of the guiding color

𝐶(1, 1) (2, 2)(4, 10), (2, 8)(4, 5), (2, 1)(4, 2) 𝐶(2, 1) (3, 2)(1, 10)
𝐶(1, 𝑖) (2, 𝑖 + 1)(4, 𝑖− 1), 𝑖 = 2, 4, 5, 8, 9 𝐶(2, 2) (0, 8)(2, 7)
𝐶(1, 3) (0, 9)(1, 8) 𝐶(2, 𝑖) (3, 𝑖 + 1)(1, 𝑖− 1), 𝑖 = 3, 4, 7, 8
𝐶(1, 6) (4, 0)(3, 6) 𝐶(2, 5) (4, 9)(0, 1)
𝐶(1, 7) (3, 3)(0, 2) 𝐶(2, 6) (1, 0)(4, 6)
𝐶(1, 10) (1, 5)(2, 0) 𝐶(2, 9) (2, 4)(3, 0)

𝐶(2, 10) (3, 1)(1, 9), (3, 7)(1, 4), (3, 10)(1, 1)
Vertices: (0, 𝑖), for 𝑖 = 0, 3, 4, 5, 6, 7, 10

Elements of 𝐾5 ×𝐾13 of the guiding color
𝐶(1, 1) (2, 2)(4, 12), (2, 10)(4, 5), (2, 7)(4, 0) 𝐶(2, 1) (3, 2)(1, 12), (3, 10)(1, 5), (3, 7)(1, 0)
𝐶(1, 𝑖) (2, 𝑖 + 1)(4, 𝑖− 1), 𝑖 = 2, 3, 4, 5, 7, 8, 10, 11 𝐶(2, 𝑖) (3, 𝑖 + 1)(1, 𝑖− 1), 𝑖 = 2, 3, 4, 5, 7, 8, 10, 11
𝐶(1, 6) (3, 0)(0, 6) 𝐶(2, 6) (4, 8)(0, 4)
𝐶(1, 9) (0, 10)(1, 8) 𝐶(2, 9) (0, 3)(2, 0)
𝐶(1, 12) (2, 1)(4, 11) 𝐶(2, 12) (3, 1)(1, 11)

Vertices: (0, 𝑖), 𝑖 = 0, 1, 2, 5, 7, 8, 9, 11, 12
Elements of 𝐾5 ×𝐾21 of the guiding color

𝐶(1, 1) (2, 2)(4, 20), (2, 18)(4, 5), (2, 7)(4, 15) 𝐶(2, 1) (3, 2)(1, 20)
𝐶(1, 𝑖) (2, 𝑖 + 1)(4, 𝑖− 1), 𝑖 = 2, . . . , 19, 𝑖 ̸= 6, 16, 17 𝐶(2, 𝑖) (3, 𝑖 + 1)(1, 𝑖− 1), 𝑖 = 2, . . . , 19, 𝑖 ̸= 5, 15, 16
𝐶(1, 6) (3, 16)(0, 0) 𝐶(2, 5) (4, 0)(0, 5)
𝐶(1, 16) (2, 0)(4, 16) 𝐶(2, 15) (3, 0)(1, 15)
𝐶(1, 17) (0, 7)(1, 0) 𝐶(2, 16) (0, 16)(2, 17)
𝐶(1, 20) (2, 1)(4, 19) 𝐶(2, 20) (3, 1)(1, 19), (3, 17)(1, 4), (3, 6)(1, 14)

Vertices: (0, 𝑖), for 𝑖 = 1, . . . , 20, 𝑖 ̸= 0, 5, 7, 16

For 𝐾9 × 𝐾15 and 𝐾9 × 𝐾21, for 𝑗 = 1, . . . , 8, 𝑖 = 1, . . . , 𝑛 − 1, we have three paths 𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)1 and
𝑃 (𝑗, 𝑖)2. In this case, for each of them, we will consider 3 subpaths. Let 𝑃 (𝑗, 𝑖)(𝑘,𝑘′) be the path induced by
𝑃 (𝑗, 𝑖)𝑘

𝑛𝑘′ , 𝑃 (𝑗, 𝑖)𝑘
𝑛𝑘′+1, . . . , 𝑃 (𝑗, 𝑖)𝑘

𝑛𝑘′+𝑛−1, for 𝑗 = 1, . . . , 8, 𝑖 = 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, 2 and 𝑘′ = 0, 1, 2. In
each case, these subpaths can be rearranged to give the desired Hamiltonian cycles.
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Table A.4. Elements of particular graphs 𝐾7×𝐾𝑛 of the guiding color, for 𝑛 = 19, 25, 33 that
differ of the general case 𝐾7 ×𝐾𝑛 with 𝑔𝑐𝑑(7, 𝑛) = 1.

Cycle Edges Cycle Edges
Elements of 𝐾7 ×𝐾19 of the guiding color that differ of the Table 3

𝐶(1, 8) (0, 17)(1, 0) 𝐶(1, 12) (4, 7)(0, 18)
Vertices: (0, 𝑖), 𝑖 = 0, . . . , 20, 𝑖 ̸= 4, 6, 10, 11, 17, 18

Elements of 𝐾7 ×𝐾25 of the guiding color that differ of the Table 3
𝐶(3, 7) (6, 0)(0, 7) 𝐶(3, 17) (0, 1)(3, 9)

Vertices: (0, 𝑖), 𝑖 = 0, . . . , 20, 𝑖 ̸= 1, 4, 6, 7, 10, 16
Elements of 𝐾7 ×𝐾33 of the guiding color that differ of the Table 3
𝐶(1, 8) (0, 24)(1, 0) 𝐶(2, 24) (5, 8)(0, 0)
𝐶(1, 26) (4, 7)(0, 13) 𝐶(3, 7) (6, 0)(0, 7)
𝐶(2, 6) (5, 0)(0, 6) 𝐶(3, 25) (0, 10)(3, 9)

Vertices: (0, 𝑖), 𝑖 = 0, . . . , 2𝑤, 𝑖 ̸= 0, 6, 7, 10, 13, 24

Table A.5. Elements of particular graph 𝐾5 ×𝐾5 of the guiding color.

Cycle Edges Cycle Edges

𝐶(1, 1) (2, 2)(4, 4), (4, 2)(3, 4), (3, 2)(0, 4) 𝐶(3, 1) (3, 3)(2, 0)
𝐶(1, 2) (1, 4)(4, 0) 𝐶(3, 2) (2, 4)(0, 0),
𝐶(2, 1) (1, 0)(4, 1) 𝐶(4, 1) (2, 1)(0, 2)
𝐶(2, 2) (3, 0)(1, 2) 𝐶(4, 2) (1, 3)(3, 1), (2, 3)(0, 1), (4, 3)(1, 1)

Vertex: (0, 3)

Table A.6. Elements of particular graph 𝐾7 ×𝐾7 of the guiding color.

Cycle Edges Cycle Edges

𝐶(1, 1) (6, 6)(3, 3), (5, 6)(4, 3), (2, 6)(6, 3) 𝐶(4, 1) (0, 4)(3, 0)
𝐶(1, 2) (0, 5)(2, 0) 𝐶(4, 2) (2, 3)(1, 1)
𝐶(1, 3) (4, 0)(0, 3) 𝐶(4, 3) (3, 2)(6, 5)
𝐶(2, 1) (3, 4)(5, 0) 𝐶(5, 1) (4, 6)(1, 3)
𝐶(2, 2) (5, 3)(0, 1) 𝐶(5, 2) (4, 1)(1, 4), (3, 1)(2, 4), (6, 1)(4, 4)
𝐶(2, 3) (1, 2)(4, 5) 𝐶(5, 3) (0, 6)(6, 0)
𝐶(3, 1) (0, 2)(3, 6) 𝐶(6, 1) (1, 0)(5, 1)
𝐶(3, 2) (2, 1)(5, 4) 𝐶(6, 2) (6, 4)(1, 6)
𝐶(3, 3) (2, 2)(5, 5) 𝐶(6, 3) (5, 2)(2, 5), (4, 2)(3, 5), (6, 2)(1, 5)

Vertex: (0, 0)

– For 𝐾9 ×𝐾15, a Hamiltonian decomposition is given by {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 8, 𝑖 = 1, . . . , 7} , where 𝐶(𝑗, 𝑖)
is the following Hamiltonian cycle:

⟨
𝑃 (𝑗, 𝑖)(0,0), 𝑃 (𝑗, 𝑖)(1,2), 𝑃 (𝑗, 𝑖)(2,1), 𝑃 (𝑗, 𝑖)(0,2), 𝑃 (𝑗, 𝑖)(1,1), 𝑃 (𝑗, 𝑖)(2,0), 𝑃 (𝑗, 𝑖)(0,1), 𝑃 (𝑗, 𝑖)(1,0), 𝑃 (𝑗, 𝑖)(2,2), (0, 0)

⟩
.

Observe that, for 𝑗 = 1, 2, 3, 4 and 𝑖 = 1, . . . , 7, the cycles 𝐶(𝑗, 𝑖) and 𝐶(𝑗 + 4, 𝑖) form a Hamiltonian
decomposition of 𝜎𝑗−1(𝐶9)× 𝜎𝑖−1(𝐶15).
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Table A.7. Elements of particular graph 𝐾7 × 𝐾21 of the guiding color that differ of the
general case 𝐾7 ×𝐾𝑛 with 𝑔𝑐𝑑(7, 𝑛) = 7.

Elemets of 𝐾7 ×𝐾21 that differ of the Table 6
Cycle Edges Cycle Edges

𝐶(1, 8) (0, 11)(1, 5) 𝐶(3, 7) (3, 0)(4, 7)
𝐶(2, 5) (5, 8)(0, 2) 𝐶(6, 3) (3, 9)(0, 17)
𝐶(2, 6) (5, 0)(0, 6)
Vertices: (0, 𝑖), 𝑖 = 0, . . . , 20, 𝑖 ̸= 2, 4, 6, 11, 12, 17

Table A.8. Elements of particular graphs 𝐾9 ×𝐾𝑛 of the guiding color, for 𝑛 = 11, 13, 17, 19.

Cycle Edges Cycle Edges Cycle Edges

Elements of 𝐾9 ×𝐾11 of the guiding color

𝐶(1, 1) (3, 3)(7, 9), (3, 2)(7, 10), (3, 0)(7, 1) 𝐶(2, 3) (6, 3)(0, 4) 𝐶(3, 8) (5, 3)(1, 0)
𝐶(1, 2) (5, 2)(0, 3) 𝐶(2, 4) (0, 2)(2, 7) 𝐶(3, 9) (5, 1)(1, 7), (5, 10)(1, 8), (5, 0)(1, 9)
𝐶(1, 3) (0, 1)(1, 6) 𝐶(2, 𝑖) (4, 𝑖 + 2)(8, 𝑖− 2), 𝑖 = 5, 6, 7, 8 𝐶(3, 10) (0, 7)(3, 4)
𝐶(1, 𝑖) (3, 𝑖 + 2)(7, 𝑖− 2), 𝑖 = 4, 5, 6, 7, 8 𝐶(2, 9) (4, 1)(8, 7) 𝐶(4, 1) (0, 8)(4, 5)
𝐶(1, 9) (3, 1)(7, 7) 𝐶(2, 10) (4, 2)(8, 8) 𝐶(4, 2) (8, 9)(0, 6)
𝐶(1, 10) (3, 5)(7, 0) 𝐶(3, 1) (7, 8)(0, 5) 𝐶(4, 𝑖) (6, 𝑖 + 2)(2, 𝑖− 2), 𝑖 = 3, 4, 5, 6, 7, 8
𝐶(2, 1) (4, 6)(8, 0) 𝐶(3, 2) (5, 4)(1, 10) 𝐶(4, 9) (6, 4)(2, 0)
𝐶(2, 2) (4, 4)(8, 10), (4, 3)(8, 1), (4, 0)(8, 2) 𝐶(3, 𝑖) (5, 𝑖 + 2)(1, 𝑖− 2), 𝑖 = 3, 4, 5, 6, 7 𝐶(4, 10) (6, 2)(2, 8), (6, 1)(2, 9), (6, 0)(2, 10)

Vertices: (0, 𝑖), 𝑖 = 0, 9, 10

Elements of 𝐾9 ×𝐾13 of the guiding color

𝐶(1, 1) (3, 3)(7, 11), (3, 0)(7, 1), (3, 9)(7, 6) 𝐶(2, 𝑖) (4, 𝑖 + 2)(8, 𝑖− 2), 𝑖 = 3, 5, 6, 7, 10 𝐶(3, 6) (0, 3)(3, 10)
𝐶(1, 2) (3, 4)(7, 12), 𝐶(2, 4) (2, 4)(3, 5) 𝐶(3, 11) (5, 1)(1, 9), (5, 0)(1, 11), (5, 7)(1, 4)
𝐶(1, 3) (0, 0)(1, 3) 𝐶(2, 8) (6, 4)(0, 1) 𝐶(3, 12) (5, 2)(1, 10)
𝐶(1, 𝑖) (3, 𝑖 + 2)(7, 𝑖− 2), 𝑖 = 4, 5, 6, 9, 10 𝐶(2, 9) (7, 0)(6, 9) 𝐶(4, 1) (6, 3)(2, 11)
𝐶(1, 7) (5, 8)(0, 6) 𝐶(2, 11) (4, 1)(8, 9) 𝐶(4, 2) (0, 11)(4, 6)
𝐶(1, 8) (5, 3)(0, 2) 𝐶(2, 12) (4, 2)(8, 10) 𝐶(4, 𝑖) (6, 𝑖 + 2)(2, 𝑖− 2), 𝑖 = 3, 4, 5, 8, 9, 10
𝐶(1, 11) (3, 1)(7, 9) 𝐶(3, 1) (7, 5)(0, 9) 𝐶(4, 6) (1, 0)(8, 6)
𝐶(1, 12) (3, 2)(7, 10) 𝐶(3, 2) (5, 4)(1, 12) 𝐶(4, 7) (8, 0)(0, 7)
𝐶(2, 1) (4, 3)(8, 11) 𝐶(3, 𝑖) (5, 𝑖 + 2)(1, 𝑖− 2), 𝑖 = 3, 4, 7, 8, 9, 10 𝐶(4, 11) (6, 1)(2, 9)
𝐶(2, 2) (4, 4)(8, 12), (4, 0)(8, 2), (4, 10)(8, 7) 𝐶(3, 5) (4, 11)(2, 0) 𝐶(4, 12) (6, 2)(2, 10), (6, 0)(2, 12), (6, 8)(2, 5)

Vertices: (0, 𝑖), 𝑖 = 4, 5, 8, 10, 12

Elements of 𝐾9 ×𝐾17 of the guiding color

𝐶(1, 1) (3, 3)(7, 15), (3, 11)(7, 8), (3, 15)(7, 4) 𝐶(2, 7) (6, 11)(0, 3) 𝐶(3, 11) (7, 7)(0, 16)
𝐶(1, 2) (3, 4)(7, 16) 𝐶(2, 10) (8, 0)(5, 10) 𝐶(3, 15) (5, 1)(1, 13), (5, 9)(1, 6), (5, 13)(1, 2)
𝐶(1, 𝑖) (3, 𝑖 + 2)(7, 𝑖− 2), 𝑖 = 3, 4, 5, 7, 8, 11, 12, 14 𝐶(2, 11) (0, 12)(2, 10) 𝐶(3, 16) (5, 2)(1, 14)
𝐶(1, 6) (6, 0)(5, 6) 𝐶(2, 14) (2, 6)(3, 0) 𝐶(4, 1) (6, 3)(2, 15)
𝐶(1, 9) (7, 0)(4, 9) 𝐶(2, 15) (4, 1)(8, 13) 𝐶(4, 2) (6, 4)(2, 16)
𝐶(1, 10) (0, 11)(1, 9) 𝐶(2, 16) (4, 2)(8, 14) 𝐶(4, 𝑖) (6, 𝑖 + 2)(2, 𝑖− 2), 𝑖 = 3, 4, 6, 7, 10, 11, 13, 14
𝐶(1, 13) (1, 5)(2, 0) 𝐶(3, 1) (5, 3)(1, 15) 𝐶(4, 5) (8, 12)(0, 14)
𝐶(1, 15) (3, 1)(7, 13) 𝐶(3, 2) (5, 4)(1, 16) 𝐶(4, 8) (5, 0)(3, 8)
𝐶(1, 16) (3, 2)(7, 14) 𝐶(3, 𝑖) (5, 𝑖 + 2)(1, 𝑖− 2), 𝑖 = 𝑖 = 3, 5, 6, 9, 10, 12, 13, 14 𝐶(4, 9) (0, 6)(4, 13)
𝐶(2, 1) (4, 3)(8, 15) 𝐶(3, 4) (3, 12)(4, 0) 𝐶(4, 12) (8, 8)(0, 1)
𝐶(2, 2) (4, 4)(8, 16), (4, 12)(8, 9), (4, 16)(8, 5) 𝐶(3, 7) (1, 0)(6, 7) 𝐶(4, 15) (6, 1)(2, 13)
𝐶(2, 𝑖) (4, 𝑖 + 2)(8, 𝑖− 2), 𝑖 = 3, 4, 5, 6, 8, 9, 12, 13 𝐶(3, 8) (7, 11)(0, 5) 𝐶(4, 16) (6, 2)(2, 14), (6, 10)(2, 7), (6, 14)(2, 3)

Vertices: (0, 𝑖), for 𝑖 = 0, 2, 4, 7, 8, 9, 10, 13, 15

Elements of 𝐾9 ×𝐾19 of the guiding color

𝐶(1, 1) (3, 3)(7, 17), (3, 13)(7, 8), (3, 18)(7, 3) 𝐶(2, 6) (8, 15)(5, 0) 𝐶(3, 17) (5, 1)(1, 15), (5, 11)(1, 6), (5, 16)(1, 1)

𝐶(1, 2) (3, 4)(7, 18) 𝐶(2, 11) (6, 6)(0, 17) 𝐶(3, 18) (5, 2)(1, 16)
𝐶(1, 𝑖) (3, 𝑖 + 2)(7, 𝑖− 2), 𝑖 = 3 . . . , 15, 𝑖 ̸= 5, 10, 11 𝐶(2, 12) (3, 0)(1, 12) 𝐶(4, 1) (6, 3)(2, 17)
𝐶(1, 5) (6, 0)(5, 5) 𝐶(2, 17) (0, 9)(2, 8) 𝐶(4, 2) (6, 4)(2, 18)
𝐶(1, 10) (5, 10)(0, 11) 𝐶(2, 18) (4, 2)(8, 16) 𝐶(4, 𝑖) (6, 𝑖 + 2)(2, 𝑖− 2), 𝑖 = 3 . . . , 16, 𝑖 ̸= 4, 9, 10, 15
𝐶(1, 11) (4, 0)(6, 11) 𝐶(3, 1) (5, 3)(1, 17) 𝐶(4, 5) (2, 13)(7, 0)
𝐶(1, 16) (1, 7)(2, 0) 𝐶(3, 2) (5, 4)(1, 18) 𝐶(4, 9) (0, 6)(4, 13)
𝐶(1, 17) (3, 1)(7, 15) 𝐶(3, 3) (0, 13)(3, 12) 𝐶(4, 10) (1, 0)(8, 10)
𝐶(1, 18) (3, 2)(7, 16) 𝐶(3, 𝑖) (5, 𝑖 + 2)(1, 𝑖− 2), 𝑖 = 4 . . . , 16, 𝑖 ̸= 8, 9, 14 𝐶(4, 15) (0, 4)(4, 8)
𝐶(2, 1) (4, 3)(8, 17) 𝐶(3, 8) (7, 14)(0, 2) 𝐶(4, 17) (6, 1)(2, 15)
𝐶(2, 2) (4, 4)(8, 18), (4, 14)(8, 9), (4, 1)(8, 4) 𝐶(3, 9) (8, 0)(7, 9) 𝐶(4, 18) (6, 2)(2, 16), (6, 12)(2, 7), (6, 17)(2, 2)
𝐶(2, 𝑖) (4, 𝑖 + 2)(8, 𝑖− 2), 𝑖 = 3 . . . , 16, 𝑖 ̸= 6, 11, 12 𝐶(3, 14) (0, 3)(3, 7)

Vertices: (0, 𝑖), for 𝑖 = 0, 1, 5, 7, 8, 10, 12, 14, 15, 16, 18
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Table A.9. Elements of particular graphs 𝐾9 ×𝐾𝑛 of the guiding color, for 𝑛 = 9, 15, 21.

Cycle Edges Cycle Edges Cycle Edges

Elements of 𝐾9 ×𝐾9 of the guiding color

𝐶(1, 1) (3, 3)(7, 7), (2, 3)(8, 7), (0, 3)(1, 7) 𝐶(3, 4) (5, 6)(1, 2) 𝐶(6, 3) (0, 8)(6, 7)

𝐶(1, 2) (3, 6)(8, 0) 𝐶(4, 1) (6, 3)(2, 7) 𝐶(6, 4) (8, 6)(4, 2)

𝐶(1, 3) (6, 0)(5, 3) 𝐶(4, 2) (0, 7)(4, 6) 𝐶(7, 1) (1, 3)(5, 7)

𝐶(1, 4) (7, 8)(3, 0) 𝐶(4, 3) (6, 5)(2, 1) 𝐶(7, 2) (1, 4)(5, 8)

𝐶(2, 1) (1, 0)(4, 1) 𝐶(4, 4) (6, 6)(2, 2) 𝐶(7, 3) (1, 5)(5, 1), (8, 5)(6, 1), (0, 5)(7, 1)

𝐶(2, 2) (4, 4)(8, 8), (3, 4)(1, 8), (0, 4)(2, 8) 𝐶(5, 1) (7, 3)(3, 7) 𝐶(7, 4) (5, 4)(2, 5)

𝐶(2, 3) (4, 5)(8, 1) 𝐶(5, 2) (7, 4)(3, 8) 𝐶(8, 1) (4, 0)(0, 1)

𝐶(2, 4) (7, 0)(6, 4) 𝐶(5, 3) (7, 5)(3, 1) 𝐶(8, 2) (2, 4)(6, 8)

𝐶(3, 1) (3, 5)(0, 0) 𝐶(5, 4) (7, 6)(3, 2) 𝐶(8, 3) (5, 0)(4, 3)

𝐶(3, 2) (2, 0)(5, 2) 𝐶(6, 1) (8, 3)(4, 7) 𝐶(8, 4) (2, 6)(6, 2), (1, 6)(7, 2), (0, 6)(8, 2)

𝐶(3, 3) (5, 5)(1, 1) 𝐶(6, 2) (8, 4)(4, 8)

Vertex: (0, 2)

Elements of 𝐾9 ×𝐾15 of the guiding color

𝐶(1, 1) (3, 3)(7, 13), (3, 0)(7, 1), (3, 11)(7, 6) 𝐶(3, 7) (8, 0)(7, 7) 𝐶(6, 3) (2, 0)(0, 3)

𝐶(1, 2) (3, 4)(7, 14) 𝐶(4, 1) (6, 3)(2, 13) 𝐶(6, 6) (8, 11)(4, 1)

𝐶(1, 3) (6, 11)(5, 10) 𝐶(4, 2) (6, 4)(2, 14) 𝐶(6, 7) (8, 12)(4, 2)

𝐶(1, 𝑖) (3, 𝑖 + 2)(7, 𝑖− 2), for 𝑖 = 4, 5, 6, 7 𝐶(4, 𝑖) (6, 𝑖 + 2)(2, 𝑖− 2), 𝑖 = 3, 4, 5 𝐶(7, 1) (5, 8)(1, 0)

𝐶(2, 1) (4, 3)(8, 13) 𝐶(4, 6) (6, 0)(2, 6) 𝐶(7, 𝑖) (1, 𝑖 + 5)(5, 𝑖 + 9), 𝑖 = 2, 3, 4, 5

𝐶(2, 2) (4, 4)(8, 14), (4, 0)(8, 2), (4, 12)(8, 7) 𝐶(4, 7) (0, 4)(4, 11) 𝐶(7, 6) (1, 4)(5, 9), (1, 6)(5, 7), (1, 11)(5, 1)

𝐶(2, 𝑖) (4, 𝑖 + 2)(8, 𝑖− 2), 𝑖 = 3, 5, 6, 7 𝐶(5, 1) (1, 5)(0, 11) 𝐶(7, 7) (1, 12)(5, 2)

𝐶(2, 4) (3, 5)(1, 3) 𝐶(5, 2) (6, 9)(5, 0) 𝐶(8, 1) (0, 9)(8, 8)

𝐶(3, 1) (5, 3)(1, 13) 𝐶(5, 𝑖) (7, 𝑖 + 5)(3, 𝑖 + 9), 𝑖 = 3, 4, 5 𝐶(8, 2) (4, 6)(0, 12)

𝐶(3, 2) (5, 4)(1, 14) 𝐶(5, 6) (7, 11)(3, 1) 𝐶(8, 𝑖) (2, 𝑖 + 5)(6, 𝑖 + 9), 𝑖 = 3, 4, 5

𝐶(3, 𝑖) (5, 𝑖 + 2)(1, 𝑖− 2), 𝑖 = 3, 4 𝐶(5, 7) (7, 12)(3, 2) 𝐶(8, 6) (2, 11)(6, 1)

𝐶(3, 5) (0, 1)(3, 10) 𝐶(6, 𝑖) (8, 𝑖 + 5)(4, 𝑖 + 9), 𝑖 = 1, 4, 5 𝐶(8, 7) (2, 5)(6, 10), (2, 7)(6, 8), (2, 12)(6, 2)

𝐶(3, 6) (7, 0)(0, 6) 𝐶(6, 2) (2, 4)(0, 14)

Vertices: (0, 𝑖), for 𝑖 = 0, 2, 5, 7, 8, 10, 13

Elements of 𝐾9 ×𝐾21 of the guiding color

𝐶(1, 1) (3, 3)(7, 19), (3, 15)(7, 8), (3, 20)(7, 3) 𝐶(3, 8) (7, 11)(0, 5) 𝐶(6, 4) (0, 18)(6, 11)

𝐶(1, 2) (3, 4)(7, 20) 𝐶(4, 1) (6, 3)(2, 19) 𝐶(6, 9) (4, 0)(1, 9)

𝐶(1, 𝑖) (3, 𝑖 + 2)(7, 𝑖− 2), 𝑖 = 3, 4, 6, 7, 8, 9 𝐶(4, 2) (6, 4)(2, 20) 𝐶(6, 10) (8, 18)(4, 2)

𝐶(1, 5) (2, 15)(1, 0) 𝐶(4, 𝑖) (6, 𝑖 + 2)(2, 𝑖− 2), 𝑖 = 3, 5, 6, 7, 8, 10 𝐶(7, 1) (3, 12)(0, 11)

𝐶(1, 10) (5, 5)(0, 16) 𝐶(4, 4) (1, 14)(7, 0) 𝐶(7, 𝑖) (1, 𝑖 + 8)(5, 𝑖 + 12), 𝑖 = 2, 3, 4, 5, 7, 8

𝐶(2, 1) (4, 3)(8, 19) 𝐶(4, 9) (0, 10)(4, 8) 𝐶(7, 6) (8, 0)(6, 6)

𝐶(2, 2) (4, 4)(8, 20), (4, 16)(8, 9), (4, 1)(8, 4) 𝐶(5, 𝑖) (7, 𝑖 + 8)(3, 𝑖 + 12), 𝑖 = 1, 2, 4, 5, 6, 7 𝐶(7, 9) (1, 1)(5, 18), (1, 6)(5, 13), (1, 17)(5, 1)

𝐶(2, 𝑖) (4, 𝑖 + 2)(8, 𝑖− 2), 𝑖 = 3, 4, 5, 7, 8, 9, 10 𝐶(5, 3) (8, 17)(2, 10) 𝐶(7, 10) (1, 18)(5, 2)

𝐶(2, 6) (7, 16)(5, 0) 𝐶(5, 8) (0, 7)(5, 10) 𝐶(8, 𝑖) (2, 𝑖 + 8)(6, 𝑖 + 12), 𝑖 = 1, 3, 4, 5, 6, 8

𝐶(3, 1) (5, 3)(1, 19) 𝐶(5, 9) (7, 17)(3, 1) 𝐶(8, 2) (0, 13)(8, 12)

𝐶(3, 2) (5, 4)(1, 20) 𝐶(5, 10) (7, 18)(3, 2) 𝐶(8, 7) (6, 0)(3, 7)

𝐶(3, 3) (4, 13)(3, 0) 𝐶(6, 1) (2, 0)(0, 1) 𝐶(8, 9) (2, 17)(6, 1)

𝐶(3, 𝑖) (5, 𝑖 + 2)(1, 𝑖− 2), 𝑖 = 4, 5, 6, 7, 9, 10 𝐶(6, 𝑖) (8, 𝑖 + 8)(4, 𝑖 + 12), 𝑖 = 2, 3, 5, 6, 7, 8 𝐶(8, 10) (2, 2)(6, 19), (2, 7)(6, 14), (2, 18)(6, 2)

Vertices: (0, 𝑖), for 𝑖 = 0, 2, 3, 4, 6, 8, 9, 12, 14, 15, 17, 19, 20

– For 𝐾9 ×𝐾21, a Hamiltonian decomposition is given by {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 8, 𝑖 = 1, . . . , 10} , where 𝐶(𝑗, 𝑖)
is the following Hamiltonian cycle:
⟨
𝑃 (𝑗, 𝑖)(0,0), 𝑃 (𝑗, 𝑖)(1,0), 𝑃 (𝑗, 𝑖)(2,0), 𝑃 (𝑗, 𝑖)(0,1), 𝑃 (𝑗, 𝑖)(1,1), 𝑃 (𝑗, 𝑖)(2,1), 𝑃 (𝑗, 𝑖)(0,2), 𝑃 (𝑗, 𝑖)(1,2), 𝑃 (𝑗, 𝑖)(2,2), (0, 0)

⟩
.

Observe that, for 𝑗 = 1, 2, 3, 4 and 𝑖 = 1, . . . , 10, the cycles 𝐶(𝑗, 𝑖) and 𝐶(𝑗 + 4, 𝑖) form a Hamiltonian
decomposition of 𝜎𝑗−1(𝐶9)× 𝜎𝑖−1(𝐶21).

– For 𝐾11×𝐾11, a Hamiltonian decomposition is given by {𝐶(𝑗, 𝑖) | 𝑗 = 1, . . . , 10, 𝑖 = 1, . . . , 5} , where 𝐶(𝑗, 𝑖)
is the following Hamiltonian cycle:

⟨︀
𝑃 (𝑗, 𝑖)0, 𝑃 (𝑗, 𝑖)9, 𝑃 (𝑗, 𝑖)7, 𝑃 (𝑗, 𝑖)5, 𝑃 (𝑗, 𝑖)3, 𝑃 (𝑗, 𝑖)1, 𝑃 (𝑗, 𝑖)10, 𝑃 (𝑗, 𝑖)8, 𝑃 (𝑗, 𝑖)6, 𝑃 (𝑗, 𝑖)4, 𝑃 (𝑗, 𝑖)2, (0, 0)

⟩︀
.

Observe that, for 𝑗 = 1, . . . , 5 and 𝑖 = 1, . . . , 5, the cycles 𝐶(𝑗, 𝑖) and 𝐶(𝑗 + 5, 𝑖) form a Hamiltonian
decomposition of 𝜎𝑗−1(𝐶11)× 𝜎𝑖−1(𝐶11).
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Table A.10. Elements of particular graph 𝐾11 ×𝐾11 of the guiding color.

Cycle Edges Cycle Edges

𝐶(1, 1) (9, 9)(4, 4), (10, 9)(3, 4), (1, 9)(2, 4) 𝐶(6, 𝑖) (4, 𝑖− 2)(9, 𝑖 + 3), 𝑖 = 3, 4, 5
𝐶(1, 2) (3, 7)(10, 0) 𝐶(7, 1) (5, 9)(10, 4)
𝐶(1, 3) (9, 1)(4, 6) 𝐶(7, 2) (5, 10)(10, 5)
𝐶(1, 4) (7, 5)(6, 3) 𝐶(7, 𝑖) (5, 𝑖− 2)(10, 𝑖 + 3), 𝑖 = 3, 5
𝐶(1, 5) (7, 0)(6, 5) 𝐶(7, 4) (8, 0)(6, 4)
𝐶(2, 1) (7, 3)(0, 9) 𝐶(8, 1) (6, 9)(1, 4)
𝐶(2, 2) (10, 10)(5, 5), (1, 10)(4, 5), (2, 10)(3, 5) 𝐶(8, 2) (6, 10)(1, 5)
𝐶(2, 𝑖) (10, 𝑖− 2)(5, 𝑖 + 3), 𝑖 = 3, 4, 5 𝐶(8, 3) (6, 1)(1, 6)
𝐶(2, 5) (9, 10)(5, 0) 𝐶(8, 4) (7, 9)(9, 0)
𝐶(3, 1) (8, 10)(0, 3) 𝐶(8, 5) (0, 10)(3, 0)
𝐶(3, 2) (1, 0)(6, 2) 𝐶(9, 1) (4, 0)(0, 1)
𝐶(3, 𝑖) (1, 𝑖− 2)(6, 𝑖 + 3), 𝑖 = 3, 4, 5 𝐶(9, 2) (7, 10)(2, 5)
𝐶(4, 1) (2, 9)(7, 4) 𝐶(9, 3) (7, 1)(2, 6)
𝐶(4, 2) (0, 6)(4, 8) 𝐶(9, 4) (7, 2)(2, 7), (8, 2)(1, 7), (9, 2)(10, 7)
𝐶(4, 𝑖) (2, 𝑖− 2)(7, 𝑖 + 3), 𝑖 = 3, 4, 5 𝐶(9, 5) (5, 4)(4, 7)
𝐶(5, 1) (3, 9)(8, 4) 𝐶(10, 1) (5, 8)(0, 5)
𝐶(5, 2) (3, 10)(8, 5) 𝐶(10, 2) (6, 0)(5, 2)
𝐶(5, 𝑖) (3, 𝑖− 2)(8, 𝑖 + 3), 𝑖 = 3, 4, 5 𝐶(10, 3) (8, 1)(3, 6)
𝐶(6, 1) (4, 9)(9, 4) 𝐶(10, 4) (8, 9)(2, 0)
𝐶(6, 2) (4, 10)(9, 5) 𝐶(10, 5) (8, 3)(3, 8), (9, 3)(2, 8), (10, 3)(1, 8)

Vertices: (0, 𝑖), for 𝑖 = 0, 2, 4, 7, 8

Table A.11. Elements of particular graph 𝐾11 ×𝐾13 of the guiding color.

Cycle Edges Cycle Edges

𝐶(1, 1) (9, 11)(4, 4), (9, 12)(4, 3), 𝐶(3, 5) (0, 11)(3, 0)
(9, 1)(4, 2)

𝐶(1, 2) (6, 0)(0, 2) 𝐶(3, 𝑖) (1, 𝑖− 2)(6, 𝑖 + 3),
𝑖 = 6, 7, 8, 9

𝐶(1, 3) (1, 12)(2, 7) 𝐶(3, 10) (1, 8)(6, 1)
𝐶(1, 𝑖) (9, 𝑖− 2)(4, 𝑖 + 3), 𝐶(3, 11) (1, 9)(6, 2)

𝑖 = 4, 5, 6, 7, 8, 9
𝐶(1, 10) (9, 8)(4, 1) 𝐶(3, 12) (1, 10)(6, 3)
𝐶(1, 11) (8, 5)(5, 0) 𝐶(4, 1) (5, 6)(3, 8)
𝐶(1, 12) (0, 6)(1, 0) 𝐶(4, 2) (2, 12)(7, 5)
𝐶(2, 1) (0, 7)(2, 0) 𝐶(4, 𝑖) (2, 𝑖− 2)(7, 𝑖 + 3),

𝑖 = 3, 4, 5, 6, 7, 8
𝐶(2, 2) (10, 12)(5, 5), (10, 1)(5, 4), 𝐶(4, 9) (9, 0)(0, 9)

(10, 2)(5, 3)
𝐶(2, 3) (8, 0)(7, 3) 𝐶(4, 10) (10, 11)(9, 9)

Second, we apply each constructed Hamiltonian decomposition to define a guiding color from which the total
coloring is obtained, please refer to the corresponding tables.
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Table A.11. Continued.

Cycle Edges Cycle Edges

𝐶(2, 4) (3, 9)(1, 11) 𝐶(4, 11) (2, 9)(7, 2), (2, 10)(7, 1),
(2, 11)(7, 12)

𝐶(2, 𝑖) (10, 𝑖− 2)(5, 𝑖 + 3), 𝐶(4, 12) (9, 10)(0, 3)
𝑖 = 5, 6, 7, 8, 9

𝐶(2, 10) (10, 8)(5, 1) 𝐶(5, 1) (6, 7)(4, 0)
𝐶(2, 11) (10, 9)(5, 2) 𝐶(5, 2) (0, 10)(5, 7)
𝐶(2, 12) (7, 0)(0, 12) 𝐶(5, 𝑖) (3, 𝑖− 2)(8, 𝑖 + 3),

𝑖 = 3, 4, 5, 6, 7, 8, 9
𝐶(3, 1) (4, 6)(2, 8) 𝐶(5, 10) (4, 5)(7, 4)
𝐶(3, 2) (6, 8)(10, 0) 𝐶(5, 11) (10, 10)(0, 1)
𝐶(3, 3) (1, 1)(6, 6), (1, 2)(6, 5), 𝐶(5, 12) (3, 10)(8, 3), (3, 11)(8, 2),

(1, 3)(6, 4) (3, 12)(8, 1)
𝐶(3, 4) (8, 4)(0, 5)

Vertices: (0, 𝑖), for 𝑖 = 0, 4, 8
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