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Abstract

The computational complexity of the MAXCUT problem restricted to interval graphs
has been open since the 80’s, being one of the problems proposed by Johnson in
his Ongoing Guide to NP-completeness, and has been settled as NP-complete only
recently by Adhikary, Bose, Mukherjee, and Roy. On the other hand, many flawed
proofs of polynomiality for MAXCUT on the more restrictive class of unit/proper
interval graphs (or graphs with interval count 1) have been presented along the years,
and the classification of the problem is still unknown. In this paper, we present the first
NP-completeness proof for MAXCUT when restricted to interval graphs with bounded
interval count, namely graphs with interval count 4.
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1 Introduction

A cut is a partition of the vertex set of a graph into two disjoint parts and the maximum
cut problem (denoted MAXCUT for short) aims to determine a cut with the maximum
number of edges for which each endpoint is in a distinct part. The decision problem
MAXCUT is known to be NP-complete since the seventies [17], and only recently
its restriction to interval graphs has been announced to be hard [1], settling a long-
standing open problem that appeared in a summary table in the 1985 column of the
Ongoing Guide to NP-completeness by David S. Johnson [15]. We refer the reader
to a revised version of Johnson’s summary table in [19], where one can also find a
parameterized complexity version of the said table.

An interval model is a family of closed intervals of the real line. A graph is an
interval graph if there exists an interval model, for which each interval corresponds to
a vertex of the graph, such that distinct vertices are adjacent in the graph if and only if
the corresponding intervals intersect. Ronald L. Graham proposed in the 80’s the study
of the interval count of an interval graph as the smallest number of interval lengths
used by an interval model of the graph. Interval graphs having interval count 1 are
called unit interval graphs (these are also called proper interval graphs, or indifference
graphs). Understanding the interval count, besides being an interesting and challenging
problem by itself, can be also of value for the investigation of problems that are hard
for general interval graphs, and easy for unit interval graphs (e.g. geodetic number [9,
12], optimal linear arrangement [10, 25], sum coloring [22, 23]). The positive results
for unit interval graphs usually take advantage of the fact that a representation for
these graphs can be found in linear time [11, 18]. Surprisingly, the recognition of
interval graphs with interval count k is open, even for k = 2 [8]. Nevertheless, another
generalization of unit interval graphs has been recently introduced which might be
more promising in this aspect. These graphs are called k-nested interval graphs, for
which an efficient recognition algorithm has firstly appeared in [7]. Recently, a linear
time algorithm has been devised in [20].

In the same way that MAXCUT on interval graphs has evaded being solved for
so long, the community has been puzzled by the restriction to unit interval graphs.
Indeed, two attempts at solving it in polynomial time were proposed in [4, 6] just to be
disproved closely after [3, 21]. In this paper, we give the first classification that bounds
the interval count, namely, we prove that MAXCUT is NP-complete when restricted to
interval graphs of interval count 4. This also implies NP-completeness for the newly
generalized class of 4-nested graphs, and opens the search for a full polynomial/NP-
complete dichotomy classification in terms of the interval count. It can still happen that
the problem is hard even on graphs of interval count 1. We contribute towards filling
the complexity gap between interval and unit interval graphs. We have communicated
the result at the MFCS 2021 conference [14], and previous versions of the full proof
appeared in the arXiv [13]. The present paper contains the improved and much shorter
full proof.
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Next, we establish basic definitions and notation. Section 2 describes our reduction
and Sect. 3 discusses the interval count of the interval graph constructed in [1].

1.1 Preliminaries

In this work, all graphs considered are simple. For missing definitions and notation of
graph theory, we refer to [5]. For a comprehensive study of interval graphs, we refer
to [16].

Let G be a graph. Let X and Y be two disjoint subsets of V(G). We let Eg(X,Y)
be the set of edges of G with an endpoint in X and the other endpoint in Y. A cut of
G is a partition of V(G) into two parts A, B € V(G), denoted by [A, B]; the edge
set EG(A, B) is called the cuz-set of G associated with [A, B]. The size of a cut-set is
defined as its cardinality. The size of a cut is the size of its associated cut-set. For each
two vertices u, v € V(G), we say that u and v are in a same part of [A, B] if either
{u,v} € A or {u,v} C B; otherwise, we say that u and v are in opposite parts of
[A, B]. Denote by mc(G) the maximum size of a cut-set of G. The MAXCUT problem
has as input a graph G and a positive integer k, and it asks whether mc(G) > k.

Let I C R be a closed interval of the real line. We let £(/) and r(I) denote
respectively the minimum and maximum points of I, which we call the left and the
right endpoints of I, respectively. For every non-empty collection of intervals H, we
define the left endpoint of H as €£(H) = min ¢y £(I) and the right endpoint of H as
r(H) = max ey r(1). We denote a closed interval I by [€(]), r(I)]. Distinction from
the cut notation will be clear from the context. For every two intersecting intervals
I and I’, we say that I covers I' if £(I) < £(I’) and r(I) > r(I'), that I intersects
I’ to the left if £(I) < £(I") < r(I) < r(I'), and that I intersects I’ to the right if
LIy < £(I) < r(I'") < r(I). We say that an interval I precedes an interval I’ if
r(I) < £(1"); and more generally, we say that a collection of intervals H occurs to the
left of a collection H’ if every interval in H precedes every interval in H’. The length
of an interval [ is defined as |I| = r(I) — £(I).

An interval model is a finite multiset M of intervals. The interval count of an
interval model M, denoted by ic(M), is defined as the number of distinct lengths of the
intervals in M. Let G be a graph and M be an interval model. An M-representation of
G isabijection¢: V(G) — M such that, for every two distinct vertices u, v € V (G),
we have that uv € E(G) if and only if ¢ (1) N ¢ (v) # @. If such an M-representation
exists, we say that M is an interval model of G. We note that a graph may have either
no interval model or arbitrarily many distinct interval models. A graph is called an
interval graph if it has an interval model. The interval count of an interval graph G,
denoted by ic(G), is defined as ic(G) = min {ic(M) | M is an interval model of G}.
An interval graph is called a unit interval graph if its interval count is equal to 1.

Note that, for every interval model M, there exists a unique (up to isomor-
phism) graph that admits an M-representation. Thus, for every interval model
M ={l, ..., I,},welet G g be the graph with vertex set V(G ) = {1, ..., n}and
edge set E(Gag) = {ij | i, Ij e M, ;N I; #0, i # j}. Since Gy is uniquely
determined (up to isomorphism) from M, in what follows we may make an abuse of
language and use graph terminologies to describe properties related to the intervals
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in M. Two intervals I;, I; € M are said to be true twins in G p4 if they have the same
closed neighborhood in G p.

2 Our Reduction
The following theorem is the main contribution of this work:
Theorem 2.1 MAXCUT is NP-complete on interval graphs of interval count 4.

This result is a stronger version of that of Adhikary et al. [1]. To prove Theorem 2.1,
we present a polynomial-time reduction from MAXCUT on cubic graphs, which is
known to be NP-complete [2]. Since our proof is based on that of Adhikary et al., we
start by presenting some important properties of their key gadget.

2.1 Grained Gadget

The interval graph constructed in the reduction of [1] is strongly based on two types of
gadgets, called V-gadgets and E-gadgets. In fact, these gadgets have the same structure
except for the number of intervals of certain kinds contained in each of them. In this
subsection, we present a generalization of such gadgets, rewriting their key properties
to suit our purposes. In order to discuss the interval count of the reduction of [1], we
describe it in detail in Sect. 3.

Let x and y be two positive integers. An (x, y)-grained gadget (see Fig. 1 to follow)
is an interval model H formed by 2y long intervals, y of which called left long and
y called right long intervals, together with 2x pairwise disjoint short intervals, x of
which called left short and x of which called right short. The y left long intervals all
have the same right endpoint, which also is the left endpoint of each of the y right long
intervals. The x left (resp. right) short intervals are all pairwise disjoint and intersect
each left (resp. right) long interval, but intersect no right (resp. left) long interval. We
write LS(H), LL(H), RS(H), and RL(H) to denote the left short, left long, right
short and right long intervals of H, respectively. And we omit H when it is clear from
the context.

Note that, if H is an (x, y)-grained gadget, then Gy, is a split graph such that
LS URS is an independent set of size 2x, £LL U RL is a clique of size 2y, and, for
every vertex u € LS, Ng,,(u) = LL and, for every vertex u € RS, Ng,,(u) = RL.
Moreover, the intervals in £L£ are true twins in G7¢; similarly, the intervals in R L are
true twins in Gy.

Let M be an interval model containing an (x, y)-grained gadget . We say that an
interval of M\H intersects ‘H if it intersects at least one interval of H. Otherwise, we
say that the interval does not intersect . The possible types of intersections between
an interval / € M \ 'H and H in our construction are depicted in Fig. 2, with the
used nomenclature. More specifically, the intersection between / and H is a cover
intersection if I intersects all the intervals of H (Fig. 2a), a weak intersection to the
left (right) if I intersects exactly the left (right) long intervals of H (Fig. 2, b and ¢),
and a strong intersection to the left (right) if I intersects exactly the left (right) long
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|LS|=x
e =
£Ll=y L RS|=x
e =
IRL|=y
Fig.1 General structure of an (x, y)-grained gadget
H H H
I : I fr— : I
(a) Cover intersection (b) Weak intersection to (c) Weak intersection to
the left the right
H H
I fr— : I
(d) Strong intersection to the left (e) Strong intersection to the right

Fig.2 Interval I € M \ H (a) covering H, (b) and (c) weakly intersecting  to the left and to the right,
and (d) and (e) strongly intersecting H to the left and to the right

and short intervals of H (Fig. 2, d and e). We say that M respects the structure of H
if, for every interval I € M \ 'H, we have that I either does not intersect H, or the
intersection between I and H is of one of the types described above.

The advantage of this gadget is that, by manipulating the values of x and y, we
can ensure that, in a maximum cut, the left long and right short intervals are placed in
the same part, opposite to the part containing the left short and right long intervals, as
proved in Lemma 2.3, presented shortly. Note that if M is an interval model containing
a grained gadget H and M respects the structure of H, then every left (resp. right)
short interval of H intersects exactly the same set of intervals in M. The following
remark will be useful throughout the text.

Remark 2.2 Let [A, B] be a maximum cut of a graph G. For any vertex u € V(G), if
more than half of the neighbours of u are in one part of [A, B], say A, thenu ¢ A, or
in other words u € B.

Proof Suppose thatu € A, and let [A’, B'] be the cut of G such that A’ = A\ {u} and
B’ = B U {u}. Note that, if e € Eg(A, B)\Eg(A’, B’), then ¢ is incident to u. Thus,
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since u has more than half of its neighbours in A, the size of [A’, B'] is strictly greater
than the size of [A, B], contradicting the maximality of [A, B]. O

Lemma 2.3 Let x and y be positive integers and M an interval model containing an
(x, y)-grained gadget H. Suppose that M respects the structure of H. Let [A, B] be a
maximum cut of G pq. Also, let t be the number of intervals in M \ 'H intersecting 'H,
£ be the number of intervals in M\ LS intersecting the left short intervals of H, and
r be the number of intervals in M \ ‘RS intersecting the right short intervals of H. If
Landr areodd, y > t(x/y — 1), and x > t + 2y, then the following hold:

(i) LS(H) € Aand LL(H) C B, or vice versa;
(i) RS(H) € A and RL(H) C B, or vice versa; and
(iii)) LL(H) € A and RL(H) C B, or vice versa.

Proof First, we prove that all the left short intervals are in the same part of [A, B].
Denote by N the set of intervals in M\ LS that intersect the left short intervals.

Suppose, without loss of generality, that B contains more than half of the intervals
in AV (it must occur for either A or B since £ is odd). Consider any u € LS. Then N
is the set of neighbours of #, and since more than half of the intervals of A/ are in B,
it follows that u € A. This shows that LS C A. Thus all the left short intervals are in
the same part of [A, B]. Because r is also odd, a similar argument shows that all the
right short intervals are in the same part of [A, B].

Now consider the left long intervals and suppose, without loss of generality, that
all the left short intervals are contained in A. Observe that the number of intervals in
MA\LS intersecting a left long interval is less than # 4+ 2y < x. Thus every left long
interval has more than half of its neighbours from LS, which are all in one part of
[A, B]. It now follows that every left long interval is in the part of [A, B] opposite to
that of the left short intervals, namely B. An analogous argument holds for the right
long intervals. This proves claims (i) and (ii) in the statement of the lemma.

Finally, let £ denote the set of long intervals of H and suppose by contradiction
that £L C A. Let T be the set of intervals in M \ H that intersect H; then t = |T|.
Lettg4 = |T N A| and tp = |T N B|. Now by switching the intervals in RL to B
and RS to A, we gain at least y2 + ytas + xtp cut-edges and lose at most xf4 + yip
cut-edges. Since y > #(x/y — 1), we have y> > t(x — y) = xf — yt or in other words,
y2 > Xxtag + Xtp — ytqa — ytp. So we get y2 + yta + xtp > xtg + ytp + 2tp(x — ).
As x >y, we can conclude that y2 + yta + xtp > xtg + ytp, which means that we
have more cut-edges in the new cut than in the cut [A, B], a contradiction. O

We say that (H, M) is well valued if the conditions of Lemma 2.3 are satisfied.
Moreover, we say that the constructed model M is well valued if all its grained gadgets
'H are well valued with respect to the model M. Finally, we say that H is A-partitioned
by [A, B]if LS(H)URL(H) € Aand RS(H)ULL(H) € B. Define B-partitioned
analogously.

@ Springer



Discrete & Computational Geometry (2024) 71:893-917 899

2j—1 2,
Ly, Ly

= = j+1
== 2-1 725 — _ Hy
= Ly, Ly =

H \fH I

TR

n—1 == 2j—1 12j
— Ly, Ly

H]+l
2j-1 12j "
L~ Ly

Fig. 3 General structure of a region of an (n, m)-escalator. The shaded rectangles represent the (p, ¢)-

grained gadgets Hl!

2.2 Reduction Graph

In this subsection, we formally present our construction. We will make a reduction
from MAXCUT on cubic graphs. So, let G be a cubic graph on n vertices and m edges.
Intuitively, we consider an ordering of the edges of G, and we divide the real line into
m regions, with the j-th region holding the information about whether the j-th edge is
in the cut-set. For this, each vertex u will be related to a subset of intervals traversing
all the m regions, bringing the information about which part of the cut contains u. Let
ny = (vi,...,v,) be an ordering of V(G), g = (ey, ..., e,) be an ordering of
E(G),and & = (G, y, wE).

We first describe the gadgets related to the vertices. Please refer to Fig. 3 to follow
the construction. The values of p, ¢ used next will be defined later. An (n, m)-escalator
is an interval model D formed by m + 1 (p, ¢)-grained gadgets for each v;, denoted
by H}, e, H;"H, together with 2m link intervals, denoted by Ll.l, e Ll.zm, such
that Ll.zj ~!and Ll.z" weakly intersect H'i’ to the right and weakly intersect H'l.’ o
the left. Additionally, all the grained gadgets are mutually disjoint. More specifically,
given j € {l,...,m+ 1}andi,i’ € {1,...,n} withi < i/, the grained gadget Hij
occurs to the left of 7, and the grained gadget H;, occurs to the left of H{ 1 for
je{l,...,m}.

Now, we add the gadgets related to the edges. Please refer to Fig. 4 to follow
the construction. The values of p’, ¢’ used next will be defined later. For each edge
ej = vivy € E(G), withi < i’, create a (p’, ¢’)-grained gadget £; and intervals
le., CJZ, Cj3., Cj.' in such a way that £; is entirely contained in the j-th region (i.e., in

the open interval between the right endpoint of H£ and the left endpoint of H{ H),
C ]1 and CJZ. weakly intersect Hij to the right and weakly intersect £; to the left, and
C]3. and C ;‘ weakly intersect Hl.],. to the right and strongly intersect £; to the left. We

call the intervals in {C;. li e{l,...,4}, j €{l,...,m}} intervals of type C. Denote
the constructed model by M (&) (or simply by M when & is clear from the context),
which defines the reduction graph G oq(e)-

The following straightforward lemma will be useful in the next section.
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gj (- Left short intervals

Tw = cer =

Fig. 4 General structure of the constructed interval model M (®) highlighting the intersections between
the intervals of the (1, m)-escalator D, the intervals of the (p’, ¢’)-grained gadget £ j» and the intervals

1 2 ~3 4
Cj’Cj’Cj’Cj

Lemma 2.4 LetG beagraph,my = (vy, ..., v,)andng = (ey, ..., ey) beorderings
of V(G) and E(G), respectively, and M be the model constructed as before. The
following holds for every grained gadget H.:

o M respects the structure of H;

o the number of intervals covering H is even; and

o the number of intervals strongly intersecting 'H to the left is either zero or two,
and the number of intervals strongly intersecting 'H to the right is always zero.

Observe that Lemma 2.4 implies that, in order for the values ¢ and r in Lemma 2.3 to
be odd, it suffices to choose odd values for g and ¢’.

2.3 Proof of Theorem 2.1: Maximum Cut of the Reduction Graph

Consider a cubic graph G onn vertices andm = 3n/2edges,andletry = (vy, ..., v,)
be an ordering of V(G), rg = (e1,...,en) be an ordering of E(G) and & =
(G, vy, wg). We now prove that mc(G) > k if and only if mc(Gaqes)) = (G, k),
where f is a polynomial-time computable function defined at the end of this subsec-
tion. As it is usually the case in this kind of reduction, given a cut of G, constructing
an appropriate cut of the reduction graph G r4(e) is an easy task. On the other hand,
constructing an appropriate cut [ X, Y] of G, from a given a cut [A, B] of the reduction
graph G aq(es), requires that the intervals in M(®) behave in a way with respect to
[A, B] so that [X, Y] can be inferred, a task achieved by appropriately manipulating
the values of p,q, p’, g/, as done in Lemma 2.3. We start by giving conditions on
these values that ensure that the partitioning of the edge gadget related to an edge

ej = vivy, with i < i’, depends solely on the partitioning of Hi/,.

Lemma 2.5 Let G be a cubic graph, my = (vi,...,v,) and 7 = (e1, ..., en) be
orderings of V(G) and E(G), respectively, and M(®) be the model constructed as
before, where & = (G, wy, mg). Also, let [A, B] be a maximum cut of G pq(s), and
consider ej = vijvy, i <i'. If M(®) is well valued, and q > 4n + p' + q' + 3, then
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o ile.j is A-partitioned by [A, B, then {c}, cj} C B; otherwise, {c}, CJZ.} C A;
and

° if’Hl.j, is A-partitioned by [A, B], then {C?, C‘}} C B and &; is A-partitioned by
[A, B]; otherwise, {C;, C;‘} C A and &; is B-partitioned by [A, B].

Proof Denote M (®) by M for simplicity. Since M is well valued, by Lemma 2.3,
we may assume that H[j is A-partitioned by [A, B], i.e., that LS U RL C A and
LLURS € B. We make the arguments for le. and it will be clear that they also hold
forC 12 Observe first that all the grained gadgets covered by C ]1 have a balanced number

of intervals in A and in B. More formally, from the intervals within the gadgets Hé ,
i + 1 < £ < n, which are all the grained gadgets covered by C!, there are exactly
(n—i)(p+gq)intervalsin A, and (n —i)(p +¢) intervals in B. Additionally, there are
at most 2(n — i) link intervals intersecting C ]1 to the left (these are the link intervals
related to v;» for i” > i in the (j — 1)-th region, if j > 1), exactly 2(n — i) link
intervals intersecting C} to the right (these are the link intervals related to v;» for
i” > i in the j-th region), and exactly 2i link intervals covering Cll. (these are the
link intervals related to v;» for i” < i in the j-th region). This is a total of at most
2(n—i)+2(n—i)+2i = 4n—2i < 4nlink intervals. Adding finally C, C3, C} and
the ¢’ right long intervals of £;, we get that the number of neighbors of CJ]. that might
be in B is at most (n — i)(p +¢q) +4n + g’ + 3, while the number of neighbors of C}
thatarein A is atleast (n—i)(p+¢q)+q.Since ¢ > 4n+p’+q'+3 > 4n+q’+3, we
can conclude that there are more neighbours of C} in A than in B. From Remark 2.2,
it follows that le. € B.

Observe that a similar argument can be applied to C?, C;‘, except that we gain

also p’ new edges from the left short intervals of £;. That is, supposing Hl.j/ is A-
partitioned by [A, B], then the number of neighbors of Cj3. that might be in B is at
most (n —i')(p + q) + 4n + p’ + g’ + 3, while the number of neighbors of Cj3. that
are in A is at least (n — i")(p + q) + q. It follows again by Remark 2.2 that C;, C;‘
are in B, sinceq > 4n + p' +q’ + 3.

Finally, suppose that H{, is A-partitioned by [A, B],in which case, from the previous
paragraph, we get that {C;, C;.‘} C B. Suppose that £; is B-partitioned. Then consider
the cut [A’, B] obtained by switching the sides of the intervals in £ ; formally, in which
every interval I € M\ £; isin A’ if and only if I € A and every interval I € &; is in

A’if and only if I € B. Clearly, the number of cut-edges having both endpoints in &;
is the same in both the cuts [A, B] and [A’, B’]. Since

|A ﬂ€j| =|B ﬂ(c,‘j| = A ﬂgj| =|B ﬂgj|,
and every interval other than C}, C%, CJ3., and C‘/.1 that intersects the gadget £; has a
cover intersection with it, the number of cut-edges in [A, B] differ from that of [A’, B’]

only by the number of cut-edges between le., CJ2., C;’, Cj! and &;. Since Cj3., C;! € B,
the 2p” edges between these two intervals and the intervals in £LS(&;) are cut-edges
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in [A’, B'] but not in [A, B]. Meanwhile, the edges between C}, C?, C;, C;‘ and &;
that are cut-edges in [A, B] but not in [A’, B'] must be from among the 4¢" edges
between le., Cjz., Cj3., Cj.l and LL(E;). Thus [A’, B'] has at least 2p’ — 44’ edges more
than [A, B]. Since M is well valued, we have 2p’ > 44’, implying that [A’, B'] is a
cut of size larger than [A, B], which is a contradiction. O

After ensuring that each grained gadget behaves well individually, we also need to
ensure that H} can be used to decide in which part of [ X, Y] we should put v;, and for
this it is necessary that all gadgets related to v; agree with one another. In other words,
for each v;, we want that the behaviour of the first gadget Hil influence the behaviour
of the subsequent gadgets Hl-z, ceey H;"H, as well as the behaviour of the gadgets
related to edges incident to v;. Given v; € V(G) and a cut [A, B] of G A4, we say

that the gadgets of v; alternate in [A, B] if, for every j € {1, ..., m}, we get that ’H!
2 j—1 ;2j
L

to the right long intervals of Hl.’ . Also, we say that [A, B] is alternating partitioned if
the gadgets of v; alternate in [A, B], for every v; € V(G). We add a further condition
on the values of p, g, p’, ¢’ in order to ensure that every maximum cut is alternating
partitioned. After this, we use the good behaviour of the constructed model in order
to relate the sizes of the maximum cuts in G and in G r((g).

is A-partitioned if and only if Hl s B- partitioned, while L; are opposite

Lemma 2.6 Let G be a cubic graph, my = (vi,...,v,) and ng = (eq, ..., en) be
orderings of V(G) and E(G), respectively, and M(®) be the model constructed as
before, where & = (G, my, wg). Also, let [A, B] be a maximum cut of G prqs). If
M(®) is well valued, g > 4n + p' +q' + 3, and g > 32n* + 2n + g’ + 2), then
[A, B] is alternating partitioned.

Proof By hypothesis, the conditions of Lemmas 2.3 and 2.5 are satisfied. Thus, we
can suppose that the obtained properties of those lemmas hold. Denote M (&) by M
for simplicity, and let M; be the family of all the intervals related to vertex v;; more
specifically, it contains every interval in some grained gadget H{ ,jefl,...,m+1},

every link interval L] Jj € {l,...,2m]}, every interval of type C that intersects Hj
to the right (this happens if e has v; as endpoint), and every interval in £; for e;
incident to v;. In what follows, we count the number f; of edges of the cut 1n01dent
to some interval in M; and argue that, if the gadgets of v; do not alternate in [A, B],
then we can obtain a bigger cut by switching the side of some intervals, thus getting
a contradiction.

Denote by M; the set of intervals M\ M;, and by A the set of all link intervals.

In what follows, there are some values that must be added to f; but remain the
same in every maximum cut of G r4(e), independently of how M; is partitioned; we
call these values irrelevant and do not add them to f;. For instance, recall that every
(x, y)-grained gadget has exactly x + y intervals in A and x + y in B. Thus, because
of Lemmas 2.3 and 2.5, the number of edges of the cut between grained gadgets and
intervals that cover them is irrelevant. In what follows, we count the other possible
edges.

First, consider j € {1 ., m}; we want to count the max1mum number of edges
of the cut incident to L; 2J (Wthh holds analogously for L; 271 Denote by ¢, the
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number of intervals in Mi N A N A that intersect Ll.zj ; define Eé similarly. Observe

that Ej + Ej < 4n since it includes at most 2(n — i) link intervals in the j-th region,
plus at most 2(n — i) link intervals in the (j — 1)-th region, and at most 2(1 — 1) link

intervals in the (j + 1)-th reglon Additionally, let a; be equal to 1 if L is opposne
to the right long intervals of H and 0 otherwise; similarly, let b; be equal tolif L; 2J
is opposite to the left long intervals of H] 1 , and 0 otherwise. Because L mlght also
be opposite to C1, ..., and it is possible that the edge between L and L s
also a cut edge, observe that the relevant number of edges of the cut incident to Ll. s
atmostq(a; +b;)+ Kﬁ + Eé + 5. Note that Ll.zj covers the gadgets £; and also every
H{,/ with which it has an intersection except H'l.j and H{ H, and hence the number of

cut-edges between Ll.zj and intervals in these gadgets is irrelevant.

Now, let ¢; be an edge incident to v; and let v be the other endpoint of e (here i’
might be smaller than i). We apply Lemma 2.5 in order to count the edges incident to
giu(c LI C?} N.M;). First observe that, since &; is always partitioned according

to C;, C;‘, we have an irrelevant value of 2 p’, namely the edges between C; , C;l and the
left short intervals of £;. Now, suppose, without loss of generality, that {C}, Cf} C A.
If {CJ3., C;‘} C A, then there are no relevant edges to be added; otherwise, we get
2q’ + 4 edges, those between C}, Cj2. and C]3., C;‘, and between C}, C]2. and the left

long intervals of £;. Finally, observe that the edges between {C ! ,C 4} and 'Hj

are irrelevant because of Lemma 2.5 and the fact that C 1 C 2 cover Hj incasei’ <i

(where e is the edge v;v;r), and that the edges between {C1 , C;‘} and the link
intervals have been counted previously. Note that the number of cut edges between two
intervals in £; and the number of cut edges between intervals in £; and link intervals

are both irrelevant. Note also that every gadget ’Hij ,foreach j € {1,2,...,m + 1},
is covered by every interval from M, that it intersects, and hence the number of cut
edges between intervals in Hlj and intervals in /\_/li is irrelevant. Also, the number of
cut edges between intervals in Hij is irrelevant, and the cut edges having one endpoint

in HI.J and other endpoint in M; \HI.J have already been counted.
In order to put everything together, let e}, ej,, e; be all the edges incident to v;,
and foreach i € {1, 2, 3}, write e, = v;v;;, (note that here i is not necessarily smaller

than ij). For each h € {1, 2, 3}, let ¢;, be equal to 1 if Hl-j and szh are partitioned
differently, and O otherwise. We then get

m 3
fi 22> (qlaj+b) + Ly + Ly +5+ > g +4). (1)
j=1 h=1

If L ' is on the same side as the right long intervals of H’ and the left long intervals
of HJ *+ , we can increase f; simply by switching the side of L; 2J . Indeed, in this case
we would lose at most max {2’ , Zé} +5 < 4n + 5 edges, while gaining 2¢, a positive
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exchange since 2g > 8n > 4n + 5 considering n > 1. Observe that this implies
aj +b; > 1. Note also that this type of argument can be always applied, and that it
can be applied also for Ll.zj -1 Hence, whenever in what follows we switch side of the
intervals in some vertex gadget, we can suppose that this property still holds, i.e., that
Ll.zj and L?J ~are always opposite to the left long intervals of Hij .

Consider now j to be minimum such that H'l./ and H'i’ +are partitioned in the same
way, say they are both A-partitioned. Note that this implies thata; +b; = 1, since the
right long intervals of Hij are in A, while the left long intervals of Hij *larein B. We
want to switch sides of Hl-] +l , but in order to ensure an increase in the size of the cut,
we need to also switch subsequent grained gadgets in case they were alternating. For
this, let j/ > j be minimum such that Hl-] 1 and Hij are either both A-partitioned or
both B-partitioned,; if it does not exist, let j/ = m+1.Foreachh € {j+1, ..., j'}, we
switch sides of 'H;’, and put L?h_l, Lizh in the side opposite to the right long intervals
of Hf’. Also switch the intervals of type C and intervals in edge gadgets appropriately;
i.e., in a way that Lemma 2.5 continues to hold. We prove that we gain at least 2g
edges, while losing at most 8m (n + 1) +6(q" +2) = 6(2n” +2n + ¢’ +2) cut edges
(recall that m = 3n/2); the result thus follows since ¢ > 3(2n> +2n + ¢’ + 2).

Observe that, by previous arguments, we have that, for every & € {j, ..., j'}, the
link intervals L?h_1 , Ll.zh are in B if and only if Hf‘ is A-partitioned. In particular, since
H{ is A-partitioned, Ll.zj - and Ll.zj are in B. Additionally, because of the switch we
now know that the left long intervals of HZ-J *larein A. This implies that we gain at least
2g edges. Now, we count our losses. Concerning intervals Ll.2/ -1 and Lizj , we lose at
most 2(6'1’9 +4) < 8n+8 cut edges, namely the edges between these intervals and link
intervals or intervals of type C. As for the intervals thil , Ll.2h forh e {j+1,...,/'},
by the definition of j’ we know that we lose at most 2 (max {ZZ, Z;‘g} +4) <8n+8
cut edges, while the number of edges of the cut between them and the vertex grained
gadgets can only increase. Hence, concerning the link intervals in M;, in total we lose
atmost 8m (n+1) = 12(n*+n) cutedges. Additionally, observe the upper bound given

by (1) to see that, in the worst case scenario, we have {ji, j2, j3} S {j + 1,...,j'}
and all the values ¢, were previously equal to 1 and are now equal to 0; this leads to
a possible loss of at most 6(g’ + 2) edges, as we wanted to show. O

Now, if [A, B] is an alternating partitioned maximum cut of G r4(¢), and M(&)
obeys the conditions in the statement of Lemma 2.5, we let ®(A, B) = [X, Y] be
the cut of G such that, for each vertex v; € V(G), we have v; € X if and only if
H,.l is A-partitioned by [A, B]. Note that [ X, Y] is well defined (i.e., ® is a function).
Additionally, given a cut [X, Y] of G, there is a unique alternating partitioned cut
[A, B] of G pq(e) obeying the conditions of Lemma 2.5, such that [X, Y] = ®(A, B)
(i.e., @ is one-to-one and onto). Therefore, it remains to relate the sizes of these cut-
sets. Basically we can use the good behaviour of the maximum cuts in G oq(e) to
prove that the size of [A, B] grows as a function of the size of ®(A, B).

Lemma 2.7 Suppose that all the conditions in Lemmas 2.3-2.6 hold, and that q’ >
13n2. Let ®(A, B) = [X, Y], and k be a positive integer. Then (below, G denotes
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Gme))

|[E(X,Y)| >k ifandonlyif |Eg(A, B)| >y + (2¢' + 4k,

where y is a well-defined polynomial-time computable functionon G,y , p,q, p', q'
(i.e., does not depend on [A, B)).

Proof We use the same notation as before and count the number of edges in Eg (A, B).
We will count the number of edges of the cut-set separately in the following groups:

among intervals of a vertex/edge grained-gadget;

between intervals of a vertex grained-gadget and link intervals;
between intervals of an edge grained-gadget and other intervals;
among intervals of type C;

among link intervals;

between link intervals and intervals of type C; and

between intervals of a vertex grained-gadget and intervals of type C.

First, we compute the number of edges of the cut-set within a given (x, y)-grained
gadget. By Lemma 2.3, we get that this is exactly y> + 2xy. Since there are (m + 1)n
(p, q)-grained gadgets (the ones related to the vertices), and m (p’, ¢’)-grained gadgets
(the edge ones), we get a total of

B = n(m + 1)(g* +2pq) +m((q)* +2p'q).

Now, we count the number of edges of the cut-set between a given vertex grained
gadget H = H'l.’ and link intervals; again, denote the set of link intervals by A. If an
interval I covers H, then there are exactly p 4+ ¢ edges between I and H, since there
are these many intervals of H in each of A and B. And if I intersects H either to the left
or to the right, then there are exactly ¢ edges between I and H, since M is alternating
partitioned (i.e., I is opposite to the corresponding long intervals of ). It remains to
count how many of each type of intervals there are. If j € {2, ..., m}, then there are
exactly 2n — 2 intervals covering H, as well as two intervals intersecting H to the left,
and two to the right; this gives a total of 2n —2)(p+¢q) +4qg = 2n(p+q)+2(q — p)
edges between H{ and A. If j = 1, then there are 2(i — 1) intervals covering H, and
two intervals intersecting H to the right, thus giving a total of 2(i — 1)(p + q) + 2g.
Finally, if j = m + 1, then there are 2(n — i) intervals covering H, and two intervals
intersecting H to the left, giving a total of 2(n —i)(p + ¢q) + 2g. Summing up, we get

Br=Y_ > [2n(p+q)+2(q - p)]

j=2i=1

+ D 26— D(p+ ) +29 + 20— ) (p + ) + 2]

i=l1
=2n(m — D[n(p+q)+ (@ — p)l+2n[(n —D(p+q) + 2q]
=2nnm—-D(p+qg)+m—-1(qg—p)+©m—-1(p+q) +2q]
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=2mn[n(p +q) +q — pl.

We count now the number of edges of the cut-set between a given edge gadget £; and
an interval [ intersecting it, and among intervals of type C. As before, if I covers £/,
then there are exactly p’ +¢’ edges between I and £; in the cut. If 1 strongly intersects
Sj to the left, then I € {C;, C?} and by Lemma 2.5 we get that this amounts to p’.
Finally, if I weakly intersects £ j to the left, then this amounts to q',if e j is in the
cut-set, or to 0, otherwise. As for the number of edges between intervals of type C, by
Lemma 2.5 one can see that this is equal to 4| Eg (X, Y)|. Summing up, we get

2nm(p' +q¢")+2p'm+ 2q' +H|Ec(X,Y)|.

Denote the value 2nm(p’ + q’) + 2p’m by B3, and note that this is independent of
[A, B].

Let us now count the number of edges of the cut-set among link intervals. For this,
denote by £/ the set of link intervals in the j-th region, i.e., £/ = (L7, L77" |
i € {l,...,n}}. Also, denote by V/; the set of indices i € {I,...,n} such that
{Ll.zjfl, sz} C A; define V] analogously and let a = |VJ| and b = |V]| We count
the number of edges of the cut between intervals of £/, for every j € {1,...,m},
and between intervals of £/ and intervals of £/t!, for every j € {l,...,m — 1},
and then we sum up. So consider a region j € {1, ..., m}, and observe that, because
[A, B] is alternating partitioned, we get that either j is odd and Vf{ contains exactly
the indices of the vertices within Y, while Vé contains the indices of the vertices
within X, or j is even and the reverse occurs. More formally: if j is odd, then Vj =
{i e {l,...,n} | v; € Y}and Vlé ={i e {l,...,n} | v; € X}; and if j is even,
then VI ={i € {1,...,n} |v; € X}and V) = {i € {1,...,n} | v; € Y}. In either
case, since for each index in V/{ (resp. Vé), there is a pair of intervals in £/ N A (resp.
L’ N B), we get that the number of edges of the cut between intervals of £/ is equal
to 4|X| - |Y| = 4ab. Now, suppose j € {1, . — 1}; we count the edges of the cut
between £/ and £/+!. Again because [A, B] is alternatmg partitioned, we know that if
Vf{ ={i1,..., 14}, then VjJrl = V[{,whlle V]Jrl = Vé ={1,. n}\V’ Supposing
i1 <...<lIg4,this implies that there are exactly four edges between {Lzaj, i lzaj/ +2}

and {Ll.zj,, LL ”} foreacha’,a” € {1, ..., a} witha' < a”. Summing up we get that

there are 4 /_(a — a’) = 4a(a — 1)/2 = 2a(a — 1) edges between £/ N A and
L7111 B. Analogously we can conclude that there are 2b (b — 1) edges between £/ N B
and £/t N A. Summing up with the previous 4ab, forevery j € {1, ...,m — 1}, we
get 2a> — 2a + 2b%> — 2b + 4ab = 2[(a + b)? — (a + b)] edges of the cut incident to
£/ minus the number of edges of the cut between £/ and £/~!, as these get counted
in £/~!. Recall that a + b = |X| + |Y| = n to see that this gives us 2n(n — 1) edges.
Finally, summing up for all j € {1, ..., m — 1} and summing also the edges between
link intervals in £, we get that the number of edges of the cut incident to link intervals
is equal to
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m—1
> 2n(m— 1) +41X|- Y] =0 — DGn —2) +4IX] - Y.
j=1

Observe that4(n — 1) < 4|X|-|Y| < n2, and denote the value n(n — 1)(3n —2) by Ba.

Now, observe that it remains to count the number of edges of the cut-set between
link intervals and intervals of type C, and between intervals of type C and vertex
grained gadgets. We start with the latter. Given an edge e; = v;v;/, with i < i’, there
are exactly n — i vertex grained gadgets covered by C }, C ]2., and n — i’ vertex grained

gadgets covered by Cj3., Cj’. Together with the g edges between each of these intervals

of type C and the corresponding vertex gadgets (namely, H{ and Hl.j,), we get a total
of 2(n —i)(p +¢q) +2(m —i")(p + q) + 4q. Even though we cannot give a precise
value below, observe that this value can be exactly computed during the construction.
The upper bound is given just to make it explicit that this is a polynomial function.
Also, below, for e; = v;v;/, the value £; denotes i and r; denotes i .

Bs = 2 —rj))(p+q)+2(n—£;)(p+q)+4q]

M-

1

J

[4n(p+q)—2@r; +L£))(p+q)+4q] <4m[n(p +q) +q].

Il
.MS

1

J

Finally, we count the number of edges of the cut between link intervals and intervals of
type C. This is the only part of the counting that will not be exact. Again, consider an

edge e; = v;v;r, and first consider the interval le.; we will see that the arguments hold
for C]2., and that analogous arguments hold for C ]3, C?. Observe that le. intersects
exactly the following link intervals: le,{ - and le,f for every i” € {1,...,n}; and
Ll.z,{'72 and Ll.z,f.f3 for every i” € {i + 1,...,n}. This is a total of less than 4n link
intervals. Because an analogous argument can be applied to CJZ., CJ3., Cj.‘, we get a total

of 167 possible edges in the cut-set, for each value of j, totalling 16nm = 24n>.
Let =37, Bi,andy = B + 4(n — 1). We now prove that |Eg(X, Y)| > k if
and only if |Eg(A, B)| > ¥ + (2q¢' + 4)k. We have proved that

_
B+4(n—1)+Q2q +4I|Eg(X,Y)| <|Eg(A, B)|
<B+25n+ 2q +|Ec(X,Y)|.

If |Eg(X,Y)| > k, then by the first inequality we have that |Eg(A, B)| > B +
4(n— 1)+ (2q' +4)k. On the other hand, if | Eg(A, B)| > B+4(n— 1)+ (2q' + Dk,
then by the second inequality we have that

25n2 —4(n — 1) - 26n?

Eg(X,Y)| >k — _ _
IEal )= 2q' +4 2q' +4
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Since ¢’ > 13n%, we get that |[Eg (X, Y)| > k — 1. o

To finish the proof that the reduction works, we simply need to choose appropriate
values for p, ¢, p’, ¢’. Recall all necessary conditions:

e for each (x, y)-grained gadget H in M, let t be the number of intervals in M \ H
intersecting H, ¢ be the number of intervals in M \ LS intersecting the left short
intervals, and » be the number of intervals in M \ RS intersecting the right short
intervals. Then we want that £ and r are both odd, and that y > #(x/y — 1) and
x >t 4+ 2y (from Lemma 2.3);

e g >4n+ p' + ¢’ + 3 (from Lemma 2.5);

e g >3(2n*+2n+ ¢’ +2) (from Lemma 2.6); and

e ¢’ > 13n? (from Lemma 2.7).

By Lemma 2.4, we know that in order for the values r, £ in the first item to be odd, it
suffices to choose ¢, ¢’ to be odd. Observe that n > 4 since G is a cubic graph. For
a given edge gadget &£;, we know that there are exactly 2n 4 4 intervals in M \ &;
intersecting it, namely the link intervals and intervals of type C in the j-th region. We
could just choose ¢’ € {1312, 13n? + 1} such that ¢’ is odd and p’ = 26n> +2n + 7.
In this case, we have p’ > ¢ 4+ 2¢’ and

26n% +2n+7 !
q/213n2>(%—1)(2n+4)2(%—1>h

since for edge gadgets 1 = 2n +4. Similarly, we choose g € {42n* +3n+ 10, 42n>+
3n + 11} such that g is odd and p = 84n> + 8n + 29. We now have p > ¢ + 2¢ and

84n% + 8n + 29 p
> 420243 +10> (————— "= _1)2n+6)> (= — 1)1,
gz s+ o ><42n2+3n+10 >(”+)—<q )

since for vertex gadgets ¢ < 2n + 6. To finish the proof of Theorem 2.1, it remains to
prove that the interval count of our reduction graph is exactly four, which is done in
the next subsection.

2.4 Proof of Theorem 2.1: Bounding the Interval Count

Consider a cubic graph G on n vertices and m = 3n/2 edges, and orderings ny, mg
of the vertex set and edge set of G. Denote the triple (G, wy, 7g) by &. First, we want
to prove that the interval count of our constructed interval model M (®) is at most 4.
But observe that the construction of M (®) is actually not unique, since the intervals
are not uniquely defined; e.g., given such a model, one can obtain a model satisfying
the same properties simply by adding € > 0 to all points defining the intervals. In
what follows, we provide a construction of a uniquely defined interval model related
to & that satisfies the desired conditions and has interval count 4.

Consider our constructed interval model M (®), and for each j € {l,...,m},
denote by S; the set of intervals related to the j-th region, ie., S; = &; U U?:l Cf v

j 2j 2j—1
U (H u{L’ u Ly’

; . We show how to accommodate S; within the closed
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Fig. 5 The closed intervals in S| U U?:l Hl.z of a graph on four vertices. We consider e] to be equal to
v3v4. Each colour represents a different interval size. The short intervals are represented by the dots located
inside the open (red) intervals. Vertical lines mark the endpoints of the intervals in S} U U?: 1 Hiz, while
the green vertical line marks the beginning of the intervals in Sp

interval [0, 6n —2] in such a way that the same pattern can be adopted in the subsequent
regions of M (®) too, each time starting at multiples of 4n. More specifically, letting
t = 4n, we will accommodate S; within [f(j — 1),6n — 2 + #(j — 1)]. Assume
e1 = v;jvy, with i < i’. Below, we describe exactly which closed interval of the line
corresponds to each interval I € ;.

e Foreachi € {1, ..., n}, theleftlong intervals ole-1 areequalto [2i — 2,2i — 3/2]

and the left short intervals are any choice of p distinct points within the open

interval (2i — 2,2i — 3/2), whereas the right long intervals of Hl.l are equal to

[2i —3/2,2i — 1] and the right short intervals are any choice of p distinct points

within the open interval (2i — 3/2,2i — 1). Note that open intervals are used to

locate the closed intervals of length zero, but that the short intervals themselves

are not open.

C!l and C? are equal to [2i — 1,2i +2n — 2].

C%’ and C% are equal to [2i" — 1, 2i" +2n — 2].

The left long intervals of £; are equal to [2n, 4n — 1].

The left short intervals of £ are any choice of p’ distinct points in the open interval

(2i +2n —2,2i’ + 2n — 2). Again, the open interval is used just to locate the

closed intervals of length zero.

e The right long intervals of & are equal to [4n — 1,4n — 1/2] and the right short
intervals are any choice of p’ distinct points within the corresponding open interval.

e Foreachi € {l,...,n}, intervals Ll.l, Ll.2 areequal to [2i — 1,4n + 2@ — 1)].

The suitable chosen lengths of the above defined closed intervals are (see Fig. 5,
where we denote by A the set of link intervals):

e 0: short intervals of all grained gadgets (dots in Fig. 5);

e 1/2: left long and right long intervals of each Hil, and right long intervals of &;
(red intervals in Fig. 5);

e 2n—1:intervals C 11 e, C;, and left long intervals of £ (blue intervals in Fig. 5);

e 4n — 1:intervals L [1 and L, for every i € [n] (orange intervals in Fig. 5).

Now, let M’(®) be the interval model where each §; is defined exactly as S, except
that we shift all the intervals to the right in a way that point 0 now coincides with point
t(j — 1). More formally, an interval / in S; corresponding to the copy of an interval
[£,r]in S; is defined as [£ +1(j — 1), r +1(j — 1)]. Also, we assign the intervals in
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the (m + 1)-th grained gadgets to be at the end of this model, using the same sizes of
intervals as above; i.e., Hf”“ is within the interval [2i — 2 +tm, 2i — 1 + tm].

We have shown above that M’ (&) has interval count 4. The following lemma shows
that the above chosen intervals satisfy the properties imposed in Sects. 2.1 and 2.2 on
our constructed interval model M (®).

Lemma 2.8 Let G be a cubic graph. Then, there exists an interval model M (®) with
interval count 4 for & = (G, wy, wg), for every ordering wy and g of the vertex set
and edge set of G, respectively.

Proof Denote M(®) by M. We need to prove that M satisfies the conditions of our
construction, namely:
i—1

(i) for every j € {1,...,m}andi € {1,...,n}, link intervals Lizj, Ll.zj weakly
intersect H; to the right and weakly intersects H; 1 to the left;
(ii) forevery j € {1,...,m}andi,i’ € {I,...,n},i < i, the grained gadget ’H{

occurs strictly to the left of H{,;

(iii) for every j € {1 ., m}, grained gadget £; occurs strictly between the right
endpoint of 7}, and the left endpoint of H] + and

(iv) for every e; = vivy € E(G),i < i/, mtervals C}, C? weakly intersect Hl.j to
the right and &; to the left, while C;’, C;! weakly intersect Hij, to the right and
strongly intersect &; to the left.

By construction, we know that the right endpoint of ’Hij isequalto2i — 1 4+1¢(j — 1),
which is also equal to the left endpoints of L.2] 7], .zj Also, the left endpoint of
2j—-1 ,2j
’ L

1

H{ s equal to 2i — 2 + 1, which is also equal to the right endpoints of L;
since t = 4n; hence (i) follows. As for (ii), just note that the right endpoint of ’Hl.j ,
which is equal to 2i — 1 4 #(j — 1), is strictly smaller than the left endpoint of Hl.j,,
which is equal to 2i" — 2 + #(j — 1). Indeed, since i’ > i + 1, we get 2i’ — 2 >
2(i +1) —2 = 2i > 2i — 1. Now, observe that £; is contained in the closed interval
[2n 4 t(j — 1),4n — 1/2 4+ t(j — 1)], that the right endpoint of 7}, is equal to
2n — 1 4+ t(j — 1), and the left endpoint of Hj+ isequal to tj = 4n +t(j — 1).

Item (iii) thus follows. Finally, as we have seen, the right endpoint of H{ is equal to
2i — 1 +1¢t(j — 1), which is equal to the left endpoints of C 1 CJZ-; hence these weakly
intersect Hl.j to the right. Also, the left endpoint of £; is equal to 2n+-1 (j — 1), while the
rightendpoint of C} , C? isequalto2(i —1)+2n+t(j—1), and all the left short intervals
of £ are contained in the openinterval [2(i —1)+2n+1 (j—1), 2(i'— 1)+ 2n+1(j—1)].
Therefore we get that C ]1., ng weakly intersect £; to the left. Analogously, the right
endpoint of Hj is equal to 2i" — 1 + #( j — 1), which is equal to the left endpoints
of C3 C4 hence they weakly intersect ’H to the right. Finally, the right endpoint of
Cj, Cj‘ isequal to 2(i" — 1) +2n + £ (j — 1), and all the left short intervals of E; are
contained in the open interval [2(i — 1) +2n+1(j — 1),2(" — 1) +2n+1(j — D]
Also, the left endpoint of the right long intervals of £; is equal to 4n — 1 4+ ¢(j — 1),
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N ;K "
(a) Ho=Ki13 (b) H3=Ps0Hy (c) Hy = P50 H3 d) H, = Pso Hg_4

Fig.6 Graph Hj fork > 2

which is strictly bigger than 2(i" — 1) +2n +1(j — 1) since i’ < n. Therefore, C;?, C;‘
strongly intersect &; to the left, finishing the proof of (iv). O

We have just shown that, for any orderings ry and g, there exists a model M (&)
of interval count 4, where & = (G, my, mg). On the other hand, we prove in the
remainder of this section that any graph isomorphic to G () has interval count at
least 4. For this, we show that all such graphs contain as an induced subgraph a certain
graph of interval count 4, which we denote by Hy. Next, we define the family { H }x>2
and prove in a more general way that ic(Hy) = k for every k > 2.

Let Ps = (uy, ..., us) be a path on five vertices. For every graph H', we let Pso H’
be the graph obtained from the disjoint union of Ps with H' by making u3, the central
vertex of Ps, adjacent to every vertex of H'. In other words, Ps o H' is the graph with
vertex set V(Ps) U V(H') and edge set E(Ps) U E(H') U {uzv | v € V(H')}. Then,
for every k > 2, we let Hy be the graph defined recursively as follows (see Fig. 6):

o Hy =Ky3;
e Hy = P50 Hi_; fork > 2.

Lemma 2.9 Foreveryk > 2, ic(Hy) = k.

Proof The proof is by induction on k. Since H» = K3 and ic(K1 3) = 2, cf. [24],
we obtain that the lemma holds for k = 2. As inductive hypothesis, suppose that
ic(Hy) = k' for some k' > 2. We prove that ic(Hy11) = k' + 1.

First, note that, if Mp, = {I1, ..., Is} is an interval model of a Ps, with interval /;
representing vertex u;, then the precedence relation among the intervals of Iy, ..., I5
is either that of Fig. 7 (i.e., I} precedes I3, which precedes Is, and I, precedes 1), or
the reverse of the order presented in the figure, cf. [24]. Let M be an interval model
of Hy 1. Since Hy 4 contains a Ps as an induced subgraph, assume without loss of
generality that M D M p, and that, with respect to M, I; precedes I3, I3 precedes /s,
and I, precedes I4. This implies that

L(I3) < r(l) < £(ls) < r(13). 2)
By construction, the only vertex of Ps which is adjacent to the vertices of Hy is its
central vertex u3. Consequently, if My, C M is the interval model of Hy/, then there
cannot be any intersection between M Hy and Mp\{/3}, ie., [ "N I; = { for each
= MHk/ andeachi € {1,...,5}, withi # 3. Hence, it follows from (2) that
min {¢(I") | 1" € My, } >r(l)) and max{r(I')|I' e Mp,} < ().
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Fig.7 Interval model MHk’+1 of Hyr

Figure 7 illustrates this fact. As a result, I3 D I’ for every I’ € Mp,,. This, along
with the inductive hypothesis that ic(H/) = k’, implies that ic(Hy/ 1) > k' 4+ 1. On
the other hand, it is straightforward that ic(Hy ;1) < k' + 1 (for instance, consider the
model illustrated in Fig. 7). Therefore, ic(Hy 1) = k' + 1. O

Now, we finally show that G r((e) contains an Hy as an induced subgraph. Since

G is cubic, there exists an edge e¢; = (v;, vi7) € E(G) suchthat1 <i < i’. Let (see
Fig. 4):

e [ (resp. I) be a right short (resp. long) interval of H{ ;

e I3 be the link interval L%j 71;

e [, (resp. Is) be a left long (resp. short) interval of H{ H;

e [ (resp. I7) be aright short (resp. long) interval of H‘i/ ;

e I3 be the interval C ]1

e I, (resp. I]) be a left long (resp. short) interval of £;;

e Ji, Jo, and J3 be three left short intervals of Hj

lH;and

e J be aleft long interval of Hl-j 41

The interval graph related to the model comprised by such intervals is isomorphic
to Hy. More specifically, observe first that J = {J, Ji, J2, J3} models K 3. Then,
notice that P = (I, ..., Is} and P’ = {I}, ..., I5} model paths on five vertices, in
this order. Finally observe that /5 is adjacent to every I € 7, while there are no edges
between J and P’\{I3}; hence, J U P’ is a model for H3. Similarly, I3 is adjacent
to every I € J U P’, while there are no edges between J U P’ and P\{I3}; hence
J UP"UP isamodel for Hy. Therefore, G M) has an Hy as an induced subgraph,
as we wanted to prove.

3 The Interval Count of Adhikary et al.’s Construction

We provided in Sect. 2 a reduction from the MAXCUT problem having as input a cubic
graph G into that of MAXCUT in an interval graph G” having ic(G’) < 4. Although our
reduction requires the choice of orderings 7wy and g of respectively V(G) and E(G)
in order to produce the resulting interval model, we have established that we are able
to construct an interval model with interval count 4 regardless of the particular choices
for my and g (Lemma 2.8). Our reduction was based on that of [1], strengthened in
order to control the interval count of the resulting model.

This section is dedicated to discuss the interval count of the original reduction [1].
Although the interval count was not of concern in [1], in order to contrast the reduction
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found there with the one presented in this work, we investigate how interval count varies
in the original reduction considering different vertex/edge orderings. First, we establish
that the original reduction yields an interval model corresponding to a graph G’ such
that ic(G') = 0(4 |V(G’)|). Second, we exhibit an example of a cubic graph G for
which a choice of 7y and g yields a model M’ with interval count SZ( Y1V (G’ )|),
proving that this bound is tight for some choices of 7y and 7. For bridgeless cubic
graphs, we are able in Lemma 3.1 to decrease the upper bound by a constant factor,
but to the best of our knowledge O ( JIV(G) |) is the tightest upper bound. Before we
go further analysing the interval count of the original reduction, it is worthy to note
that a tight bound on the interval count of a general interval graph G as a function of
its number of vertices 7 is still open. It is known that ic(G) < [(n + 1)/2] and that
there is a family of graphs G for which ic(G) = (n —1)/3 [8, 16]. That is, the interval
count of a graph can reach ® (n).

In the original reduction, given a cubic graph G, an interval graph G’ is defined
through the construction of one of its models M, described as follows:

1. let ;y = (v1,v2,...,v,) and mg = (e1, €2, ..., ey,) be arbitrary orderings of
V(G) and E(G), respectively;

2. foreachv; € V(G),e; € E(G),let G(v;) and G(e;) denote respectively a (p, g)-
grained gadget and a (p’, ¢’)-grained gadget, where

° q:200n3+1,p=2q + 7n, and
o ¢ =100+ 1, p =2¢' +n;

3. for each vy € V(G), insert G(vg) in M such that G(v;) is entirely to the left of
G(vjy) if and only if i < j. For each ey € E(G), insert G(ex) in M entirely to
the right of G(v,) and such that G(e;) is entirely to the left of G(e;) if and only if
i< ]J;

4. foreache; = (v;,vy) € E(G), withi < i’, four intervals Illj, Ifj, I} o I ar ar
defined in M, called link intervals, such that

o I ! I and [ 2 i (resp. I, I and I3 2 ) are true twin intervals that weakly intersect
g(v,) (resp G(vir)) to the rlght

o/ lj and /; 2 (resp j and Ilz,J) weakly intersect (resp. strongly intersect)
G(ej) to the left.

By construction, therefore, Il.1 j and Il.2 j (resp. Il.l, j and Il.z, j) cover all intervals in
grained gadgets associated to a vertex vy with £ > i (resp. £ > i) or an edge ey
with ¢ < j.

Note that the number of intervals in M is independent of what orderings we choose
for the vertices and edges of G and, therefore, so is the number of vertices of G'. Let
n’ = |V(G")|. Since G is cubic, m = 3n/2. By construction,

' =nQ@p+29)+mQ@2p +2¢") + 4m = 1200n* + 901> + 25n% + 21n,
and thus n = ®(W ) Since the set of intervals covered by any link interval depends

on 7y and 7g, distinct sequences yield distinct resulting graphs G’ having distinct
interval counts.
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Fig.8 (a) A cubic graph G, and (b) a chain of nested intervals in the model M’

We show next that ic(G') = O(+/n’). Note that

o the intervals of all gadgets G(v;) and G(e;) can use only two interval lengths (one
for all short intervals, another for all the long intervals);

o for each ¢; = vjvy € E(G), withi < i’, both intervals Ilj and 12j may be
coincident in any model, and therefore may have the same length. The same holds
for both intervals I ! and I 2

Therefore, ic(G') <2m +2 =3n4+2 = @(m Therefore, the NP-completeness
result derived from the original reduction in [1] can be strengthened to state that
MAXCUT is NP-complete for interval graphs G having interval count 0( VIV (G) |).

Second, we show that there is a resulting model M’ produced in the reduction,
defined in terms of particular orderings 7wy, g for whichic(M') = Q (\4/@ . Consider
the cubic graph G depicted in Fig. 8a which consists of an even cycle (vy, va, ..., vy)
with the addition of the edges (v;, vi4n/2) for all 1 < i < n/2. For the ordering
wy = (Un, Un—1, ..., V1) and any ordering g of the edges starting with the suborder
(viv2, v2v3, ..., vyV1) (i.e., starting with the edges of the cycle), the reduction yields
a model M’ for which there is a chain / 11,1 C 121_2 c...C I,},n of nested intervals
(see Fig. 8b), which shows that ic(M’) > n, and thus ic(M") = Q(Vr').

It can be argued from the proof of NP-completeness for MAXCUT when restricted to
cubic graphs [2] that the constructed cubic graph may be assumed to have no bridges.
This fact was not used in the original reduction of [1]. In an attempt to obtain a model
M having fewer lengths for bridgeless cubic graphs, we have derived Lemma 3.1.
Although the number of lengths in this new upper bound has decreased by the constant
factor of 4/9, it is still ® (n) = O (V).

Lemma 3.1 Let G be a cubic bridgeless graphwithn = |V (G)|. There exist particular
orderings wy of V(G) and ng of E(G) such that

(1) there is a resulting model M produced in the original reduction of MAXCUT such
that ic((M) < 4n/3 +3;

(ii) for all such resulting models M, we have thatic(M) > 5if G is not a Hamiltonian
graph.

Proof Let G be a cubic bridgeless graph with V(G) = {vy, va, ..., v, }. By Petersen’s
theorem, every cubic bridgeless graph contains a perfect matching, so G admits a
perfect matching M. Let H = G\M. Therefore, H is 2-regular and, therefore, H
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consists ofa_disjoint unign ofcyclesCy, Ca, ..., Cy,forsomek > 1.Foralll <i <k,
let y, = vi,v5,..., v}q be an ordering of the vertices of C;, with k; = |C;|, such
that (%, v}, ) € E(C)forall | < j < ki, where v,’%i = vi. Additionally, let
be the ordering (v}, v3), (v5, v3), ..., (v,’q_l, v,’(i), (], v,’(i) forall 1 <i < k. Then,
let my be the ordering of V(G) obtained from the concatenation of the orderings

rr‘l,, 71‘2,, R JT(‘,, and let 7 be the ordering of E(G) obtained from the concatenation
of the orderings né, 71125, R nllg, 7y, where 1y is any ordering of the edges of M

such that (v;, v,) < (v}, vs) in Ty if v; < vjinmy.

In order to prove (ii), assume G is not a Hamiltonian graph. Therefore £ > 1.
Observe that there is the following chain of nested intervals I} C I C I3 C 14 C Is,
where

I, is the leftmost interval in RS(G (v%)),

I> is an interval in RE(Q(U%)),

I3 is a link interval corresponding to both G (v%) and G (v£ 2

I4 is a link interval corresponding to both G(vy) and G (v} Vi, ), and

I5 is a link interval corresponding to both G (vll) and G(e), where e is the edge of
M incident to vll,

since £(Is) < €(1y) < U(I3) < U(I) < £(1)) <r(l) <r(h) <r(3) <r(ly) <
r(Is5). Thus, for all such resulting models M, we have that ic(M) > 5.

In order to prove (i), we show that there exists an interval model M, produced
by the original reduction of MAXCUT considering orderings wy and mg, such that
ic(M) < 4n/3 4 3, where n = |V (G)|. Let L be the set of all link intervals of the
grained gadgets corresponding to edges of M, that is, L1 = {I;, ! I I; J, 1 ll, I I 2 |
ej = (i,i") € M}. Moreover, let L, be the set of all link 1ntervals of the gralned
gadgets corresponding to the edges (v’i, v,i ) of C; and the vertex v’i forall 1 <i <k,
that is, L, = {1” 12 |1 <i <k ej=@,v) € EC), vy = vi}. Note that
|Ly| = 2k < 2n/3 and |Li| = 4|M| =2n.Let L = Ly U Lj. Let M/ M\L
We claim that ic(M’) < 3. Since each pair of true twins 7/ Ay 2 7 and I 1 7 in
L can have the same length in M, and the same holds for each pair of true twms
I1 I i in L, it follows from this claim that ic(M) < |L{|/2 + |L2|/2 +ic(M') <
n / 3 +n+3 =4n/3+ 3, holding the result. It remains to show that the claim indeed
holds.

To prove the claim, let M” be the interval model obtained from M’ by removing all
intervals corresponding to the grained gadgets (or, in other words, by keeping only the
intervals corresponding to link intervals). It is easily seen that M” is a proper interval
model, that is, no interval is properly contained in another. Therefore, the interval
graph corresponding to M” is a proper interval graph and M” can be modified so that
their intervals have all a single length. Since it is possible to bring all grained gadgets
back to M” using two more lengths, we have that ic(M") < 3, as claimed. O

As a concluding remark, we note that the interval count of the interval model M
produced in the original reduction is highly dependent on the assumed orderings of
V(G) and E(G), and may achieve ic(M) = Q({‘/ﬂ The model M’ produced in our
reduction enforces that ic(M’) = 4 which is invariant for any such orderings. On the
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perspective of the recognition problem for interval graphs with interval count k, with
fixed k > 2, for which very little is known, our NP-completeness result on a class of
bounded interval count graphs is also of interest.

Acknowledgements We thank Vinicius F. Santos who shared reference [1], and anonymous referees for
many valuable suggestions, including improving the interval count from 5 to 4.

References

1. Adhikary, R., Bose, K., Mukherjee, S., Roy, B.: Complexity of maximum cut on interval graphs. In:
37th International Symposium on Computational Geometry. Leibniz Int. Proc. Inform., vol. 189, # 7.
Leibniz-Zent. Inform., Wadern (2021)

2. Berman, P., Karpinski, M.: On some tighter inapproximability results. In: Automata, Languages and
Programming (Prague 1999). Lecture Notes in Computer Science, vol. 1644, pp. 200-209. Springer,
Berlin (1999)

3. Bodlaender, H.L., de Figueiredo, C.M.H., Gutierrez, M., Kloks, T., Niedermeier, R.: SIMPLE MAX- CUT
for split-indifference graphs and graphs with few P4’s. In: 3rd International Workshop on Experimental
and Efficient Algorithms (Angra dos Reis 2004). Lecture Notes in Computer Science, vol. 3059, pp.
87-99. Springer, Berlin (2004)

4. Bodlaender, H.L., Kloks, T., Niedermeier, R.: SIMPLE MAX- CUT for unit interval graphs and graphs
with few Pys. In: 6th Twente Workshop on Graphs and Combinatorial Optimization (Enschede 1999).
Electronic Notes in Discrete Mathematics, vol. 3, pp. 19-26. Elsevier, Amsterdam (1999)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New
York (2008)

6. Boyaci, A., Ekim, T., Shalom, M.: A polynomial-time algorithm for the maximum cardinality cut
problem in proper interval graphs. Inform. Process. Lett. 121, 29-33 (2017)

7. Cerioli, M.R., de Oliveira, E.S., Szwarcfiter, J.L.: On counting interval lengths of interval graphs.
Discrete Appl. Math. 159(7), 532-543 (2011)

8. Cerioli, M.R., de Oliveira, E.S., Szwarcfiter, J.L.: The interval count of interval graphs and orders: a
short survey. J. Braz. Comput. Soc. 18(2), 103-112 (2012)

9. Chakraborty, D., Das, S., Foucaud, F., Gahlawat, H., Lajou, D., Roy, B.: Algorithms and complexity
for geodetic sets on planar and chordal graphs. In: 31st International Symposium on Algorithms and
Computation. Leibniz Int. Proc. Inform., vol. 181, # 7. Leibniz-Zent. Inform., Wadern (2020)

10. Cohen, J., Fomin, F., Heggernes, P., Kratsch, D., Kucherov, G.: Optimal linear arrangement of interval
graphs. In: International Symposium on Mathematical Foundations of Computer Science (Stard Lesnd
2006). Lecture Notes in Computer Science, vol. 4162, pp. 267-279. Springer, Berlin (2006)

11. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit
interval graphs. Inform. Process. Lett. 55(2), 99-104 (1995)

12. Ekim, T., Erey, A., Heggernes, P., van 't Hof, P., Meister, D.: Computing minimum geodetic sets
of proper interval graphs. LATIN 2012: Theoretical Informatics (Arequipa 2012). Lecture Notes in
Computer Science, vol. 7256, pp. 279-290. Springer, Heidelberg (2012)

13. de Figueiredo, C.M.H., de Melo, A.A., Oliveira, E.S., Silva, A.: Maximum cut on interval graphs of
interval count five is NP-complete (2020). arXiv:2012.09804

14. de Figueiredo, C.M.H., de Melo, A.A., Oliveira, E.S., Silva, A.: Maximum cut on interval graphs of
interval count four is NP-complete. In: 46th International Symposium on Mathematical Foundations
of Computer Science (Tallinn 2021). Leibniz Int. Proc. Inform., vol. 202, # 38. Leibniz-Zent. Inform.,
Wadern (2021)

15. de Figueiredo, C.M.H., de Melo, A.A., Sasaki, D., Silva, A.: Revising Johnson’s table for the 21st
century. Discrete Appl. Math. 323, 184-200 (2022)

16. Fishburn, P.C.: Interval graphs and interval orders. Discrete Math. 55(2), 135-149 (1985)

17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. Theor. Comput.
Sci. 1(3), 237-267 (1976)

18. Herrera de Figueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time algorithm for proper
interval graph recognition. Inform. Process. Lett. 56(3), 179-184 (1995)

19. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6(3), 434-451 (1985)

@ Springer


http://arxiv.org/abs/2012.09804

Discrete & Computational Geometry (2024) 71:893-917 917

20.

21.

22.

23.

24.

25.

Klavik, P., Otachi, Y., §ejnoha, J.: On the classes of interval graphs of limited nesting and count of
lengths. Algorithmica 81(4), 1490-1511 (2019)

Kratochvil, J., Masafik, T., Novotn4, J.: U/-bubble model for mixed unit interval graphs and its applica-
tions: the MaxCut problem revisited. In: 45th International Symposium on Mathematical Foundations
of Computer Science. Leibniz Int. Proc. Inform., vol. 170, # 57. Leibniz-Zent. Inform., Wadern (2020)
Marx, D.: A short proof of the NP-completeness of minimum sum interval coloring. Oper. Res. Lett.
33(4), 382-384 (2005)

Nicoloso, S., Sarrafzadeh, M., Song, X.: On the sum coloring problem on interval graphs. Algorithmica
23(2), 109-126 (1999)

Roberts, E.S.: Indifference graphs. In: Proof Techniques in Graph Theory (Ann Arbor 1968), pp.
139-146. Academic Press, New York (1969)

Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Appl. Math. J. Chin. Univ. Ser. B 10(3),
337-344 (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer



	Maximum Cut on Interval Graphs of Interval Count Four is NP-Complete
	Abstract
	1 Introduction
	1.1 Preliminaries

	2 Our Reduction
	2.1 Grained Gadget
	2.2 Reduction Graph
	2.3 Proof of Theorem 2.1: Maximum Cut of the Reduction Graph
	2.4 Proof of Theorem 2.1: Bounding the Interval Count

	3 The Interval Count of Adhikary et al.'s Construction
	Acknowledgements
	References




