# Complex Networks and their Analysis with Random Walks

Daniel R. Figueiredo Federal University of Rio de Janeiro, Brazil

> Konstantin Avrachenkov INRIA Sophia Antipolis, France

ITC 27 - Tutorial - Ghent, Belgium





## Objectives and Organization

- ☐ First contact
  - o "networks everywhere"
- ☐ Empirical findings of networks
  - o important commonalities
- Mathematical models for networks
- Random walk premier
  - o simple yet profound
- Applications of random walks
  - o sampling, ranking, clustering, etc

1h

**Daniel** 

1h

break

.5h

Kostia

1.5h



## How to study networks?

- Networks obtained empirically provide one, complicated instance o eg., Facebook, Web, Neurons
- Need to work with abstractions

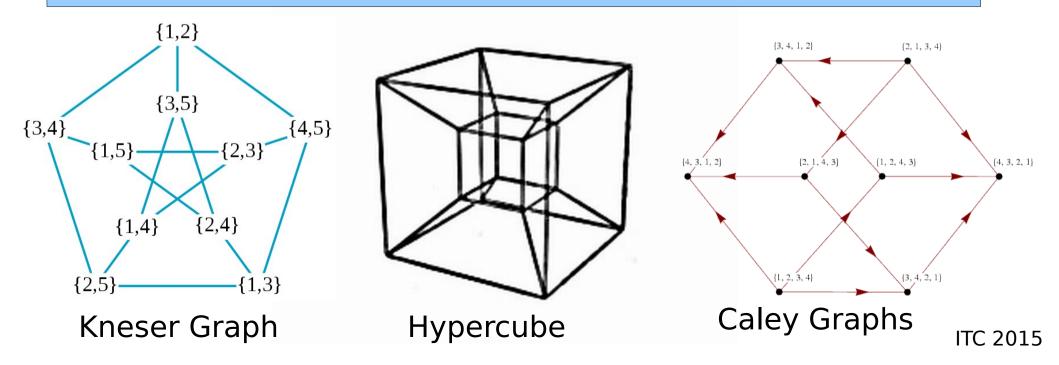
#### Mathematical models to the rescue!

- ☐ Simplify reality for fundamental understanding of various properties
- Models for network structure (connectedness)

## **Deterministic Models**

- Network structure is deterministico rules uniquely determine network formation
- Structural properties are deterministic

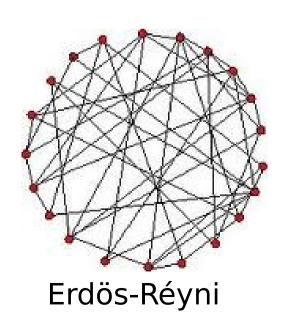
#### **Examples of models?**

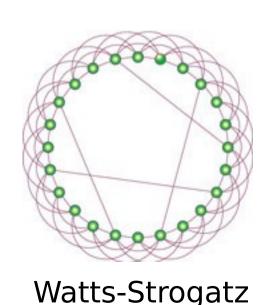


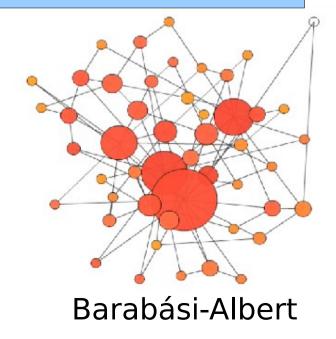
## Probabilistic Models

- Network structure is random
  - o probabilistic rules determine network formation
- Structural properties are random

#### **Examples of models?**







## G(n,p) Model

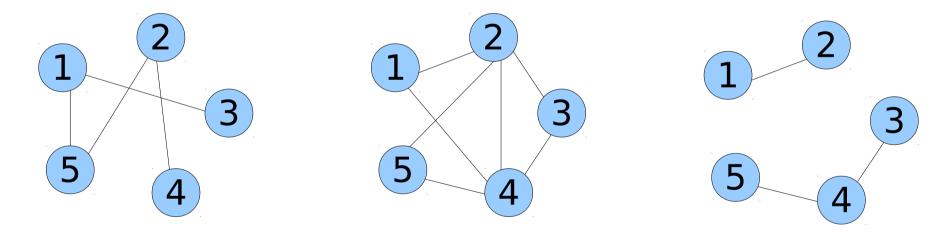
- Classic and most widely studied model for random graphs
  - o first studied by Erdós and Rényi in 50s
  - o aka. Binomial model, Erdós-Rényi model
- ☐ The model
  - o network has *n* labeled nodes
  - o each possible edge is present with probability p, independently

#### Very simple model!

yet surprisingly rich structures emerge

## G(n,p) Example

- □ Given its two parameter, *n* and *p*, what network is formed?
- $\square$ Ex. n=5, p=0.25



■ Network is random! A realization of the random process (choosing edges)

## Characterizing the G(n,p)

# What kind of networks does G(n,p) generates?

- □ Is it a connected graph? What is the degree distribution? What is the clustering? Etc
- □ Random structure depends on *n* and *p*
- □ Characterize structural properties for large *n* and scaling *p*
- Determine conditions for properties to be present with high probability

## Simple Properties

- $\square$  Sample space of G(n,p)?
  - o S = all possible graphs with n nodes
- What is the sample space size?

$$|S| = 2^{\binom{n}{2}}$$
 Every possible edge can either be present or absent

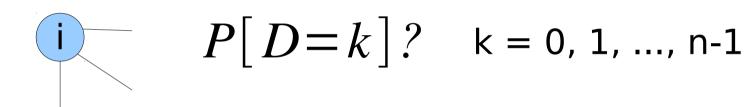
- $\square$  n=15, |S| > number of atoms on universe!
- Probability of generating a given graph,

defined by E = {e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>k</sub>}?
$$P(generate\ set\ E) = p^{|E|} (1-p)^{\binom{n}{2}-|E|}$$

 $\square$  depends only on k, and not the set E

## Degree in G(n,p)

- What is the degree of a given node? o degree is random!
- ■What is degree distribution of a given node?



Each edge incident on node i with probability p

$$P[D=k] = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Binomial distribution

■ Expected degree

$$E[D] = (n-1)p$$

## Connected Components

- $\square$  Is G(n,p) connected? Size of connected components?
- $\square$  Let p be a function of n, thus p(n)
  - o if p(n) = z/(n-1) for constant z, then E[D] = z
- $\Box$  z < 1 (subcritical)
  - o all CC have size O(log n), many components
- $\Box$  z > 1 (supercritical)
  - o largest CC has size  $\Omega(n)$ , all others O(log n)
- $\square z = \Omega(\log n)$ 
  - o single CC, network is connected

#### Phase transitions on graph structure!

results valid with high probability as n grows

## G(n,p) and Real Networks



□ Is G(n,p) a good model for real networks?

#### (most) Real Networks

- Short distances
- High clustering
- Heavy-tailed degree distribution

#### G(n,p)

- Short distances
- $\downarrow$  Low clustering (p)
- ✓ □ Binomial degree distribution

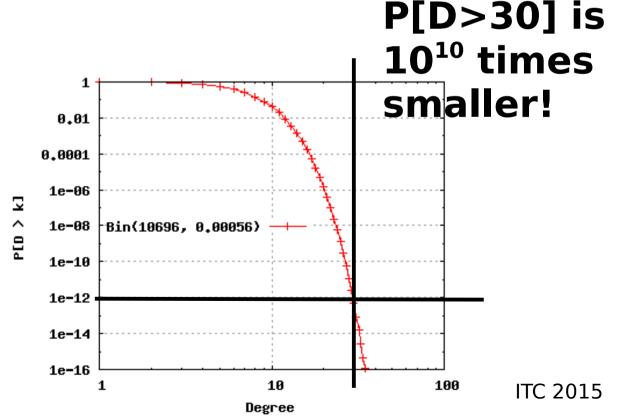
Fundamentally important, yet fundamentally different

## Example

- □ AS Graph, 11K nodes, 32K edges
- □ Apply G(n,p) preserving n and avg deg (=6.16) o n=11K, p=0.00056
- Clustering: data=0.39, model=0.00056o almost **1000** times smaller

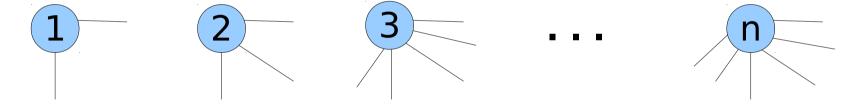
Degree distribution

10<sup>-1</sup>
10<sup>-2</sup>
10<sup>-3</sup>
(d) Internet
10<sup>-4</sup>
1 10 100 1000



## Configuration Model

- ■Idea: specify degree of network nodes, connect them at random
- Parameters: degree sequence d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>n</sub>
   o degree sum has to be even



- Connect edge points at randomo multiple edges unlikely if network is very large
- $\square$  Generalization of G(n,p)
  - o allows for arbitrary degree distribution
  - o still very low clustering

## Generative Models

- Grow network iteratively
  - o add nodes and edges over time
- □ Capture some fundamental aspect of network formation
  - o structure is consequence of iterative rules

## Various models proposed in this class

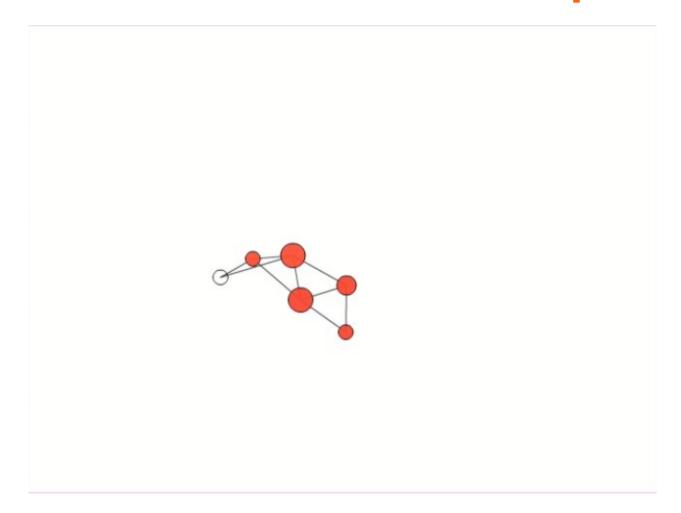
## Preferential Attachment

- Old phenomenon for growing dynamics
  - o cumulative advantage, rich-gets-richer,
     Matthew effect, etc
- □ **Idea**: accumulated resources promote the accumulation of further resources
- Various empirical observations
  - o word usage, city growth, etc
- Applied to networks
  - o paper citation networks: Solla Price, 50's
  - o hyperlinks on web: Barabasi-Albert, 99

### **BA** Model

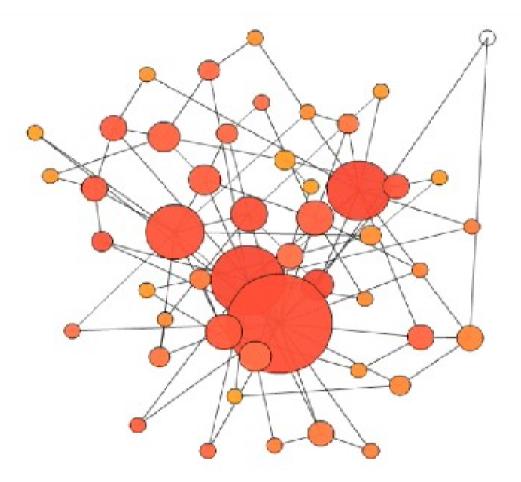
- ☐ Barabási-Albert model, proposed in 1999 (Science paper with over 23K citations)
  - o preferential attachment based on node degree
- ■At each step
  - o add one node with degree m
  - o choose each neighbor with probability proportional to their degree
- Parameters
  - o small initial network
  - o m, number of edges added with each node

## BA Model Example



Initial network is a triangle, m = 2
 o size of node proportional to node degree

## BA Model Example





- What is happening?
- many small degree, few high degree

Preferential attachment



Heavy-tailed degree distribution

## **BA Model Properties**

- Analysis via continuous approximations with differential equations
- $\Box d_{\mu}(t)$ : average degree of node u at time t
  - $ot_{u}$ : time node u entered network

$$d_{u}(t) = m \left(\frac{t}{t_{u}}\right)^{1/2}$$

 $\square$  Assuming  $t_{ij}$  is uniformly chose [1, t]

$$P[d_u(t)=k] \approx \frac{2m^2}{k^3}$$

Power law degree distribution!

## Limitations of BA

- Power law exponent is fixed, equal to 3
  - o real networks have various decays
- Older nodes always have higher degrees
  - o real networks new nodes can take over; Facebook
- Clustering coefficient is very low
- No new edges among existing nodes

#### Many, many more models!

up to address these and other limitations

## References

#### **Textbooks**

- ☐ Mark Newman, Networks: An Introduction, 2010
- Albert-László Barabási, Network Science, 2015
- ☐ B. Bollobas, Random Graphs, 2001

#### **Papers**

- A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 1999
- □ Scale-Free Networks: A Decade and Beyond, Science (special issue) 2009