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ABSTRACT

This paper describes and evaluates the use of aggressive static anal-
ysis in Jackal, a fine-grain Distributed Shared Memory (DSM) sys-
tem for Java. Jackal uses an optimizing, source-level compiler
rather than the binary rewriting techniques employed by most other
fine-grain DSM systems. Source-level analysis makes existing access-
check optimizations (e.g., access-check batching) more effective
and enables two novel fine-grain DSM optimizations: object-graph
aggregation and automatic computation migration.

The compiler detects situations where an access to a root object
is followed by accesses to subobjects. Jackal attempts to aggre-
gate all access checks on objects in such object graphs into a single
check on the graph’s root object. If this check fails, the entire graph
is fetched. Object-graph aggregation can reduce the number of net-
work roundtrips and, since it is an advanced form of access-check
batching, improves sequential performance.

Computation migration (or function shipping) is used to opti-
mize critical sections in which a single processor owns both the
shared data that is accessed and the lock that protects the data. It
is usually more efficient to execute such critical sections on the
processor that holds the lock and the data than to incur multiple
roundtrips for acquiring the lock, fetching the data, writing the
data back, and releasing the lock. Jackal’s compiler detects such
critical sections and optimizes them by generating single-roundtrip
computation-migration code rather than standard data-shipping code.

Jackal’s optimizations improve both sequential and parallel ap-
plication performance. On average, sequential execution times of
instrumented, optimized programs are within 10% of those of unin-
strumented programs. Application speedups usually improve sig-
nificantly and several Jackal applications perform as well as hand-
optimized message-passing programs.

1. INTRODUCTION

Software fine-grain Distributed Shared-Memory (DSM) systems
store shared data in small memory regions that are managed inde-
pendently by a software cache coherence protocol. This approach
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avoids false sharing, a common problem in DSM systems, but in-
troduces overhead in the form of software access checks that detect
absent or invalid cache entries. Most current fine-grain DSM sys-
tems use binary rewriting tools to insert these checks [14, 25, 26].
Since the overhead of such checks is considerable, these systems
analyze the binary code they rewrite and optimize by combining
and removing checks.

This paper investigates an alternative approach that we have used
in the implementation of Jackal, a fine-grain DSM system for the
Java programming language. Jackal uses extensive source-level
static analysis to optimize performance. This approach has two
advantages: it makes existing access-check optimizations more ef-
fective and it enables new optimizations.

Existing access-check optimizations become more effective be-
cause Jackal’s source-level compiler can differentiate between types,
can compute the set of called functions at each call site, and because
analysis and optimization can take place before complex pointer
arithmetic is introduced by the compiler’s backend optimizer. Jackal’s
global analyzer computes the possible targets of virtual function
calls and can therefore expose more code to access-check optimiza-
tions that are based on common-subexpression elimination and re-
dundancy analysis. In addition, the compiler uses array-aggregation
analysis, an extended form of access-check batching [25] that aims
to combine checks on individual array elements into a single check
for the entire array. This can improve sequential performance sub-
stantially and additionally reduces the number of network roundtrips
required to access array elements.

Jackal’s source-level analysis also enables two new fine-grain
DSM optimizations: object-graph aggregation and automatic com-
putation migration. Object-graph aggregation is the pointer equiv-
alent of array aggregation. Through static interprocedural data ac-
cess analysis, the Jackal compiler detects situations where an ac-
cess to some object (called the root object) is always followed by
accesses to subobjects. In that case, the system views the root ob-
ject and the subobjects as an object graph. Jackal attempts to ag-
gregate all access checks on objects in such a graph into a single ac-
cess check on the graph’s root object. If this check fails, the entire
object graph is fetched, which can reduce the number of network
roundtrips. Object-graph aggregation, therefore, has the potential
to improve both sequential and parallel performance.

Computation migration is used to optimize certain common types
of critical sections. Java knows no explicit, programmer-specified
association between data and the lock that protects it, although each
Java object has a lock associated with it. It is, however, common
to protect object data with the same object’s lock. A barrier ob-
ject, for example, might consist of two counters, and be accessed



by synchronized methods that lock the barrier object and update
a counter. When such an object is updated in a critical section,
the updating thread typically incurs multiple network roundtrip de-
lays, because it must acquire the lock, fetch the data, write the data
back, and release the lock. With Jackal’s computation-migration
optimization, only a single roundtrip is needed to execute this type
of critical section. Instead of executing the normal protocols for
acquiring a lock and faulting in the object data, the thread that exe-
cutes the synchronized code conceptually migrates to the processor
that owns the object, executes the critical section, and returns. In
reality, Jackal’s compiler generates a separate function for the syn-
chronized block of code. This function is invoked as a Remote Pro-
cedure Call (RPC). The compiler determines which live variables
must be packed into the RPC request to build a correct execution
environment.

To assess the impact of Jackal’s analyses and optimizations, we
compare, on the identical hardware, the performance of Jackal ap-
plications with the performance of equivalent message-passing ap-
plications on a high-performance RMI implementation. Using mes-
sage passing, the programmer has almost complete control over
the communication, so RMI applications must be considered hand-
optimized in comparison with the compiler-optimized Jackal ap-
plications. Our performance results are encouraging. On average,
the sequential performance of our applications is within 10% of
sequential code without access checks. The use of computation
migration, array aggregation, and object-graph aggregation always
improves the parallel performance of Jackal programs, usually sig-
nificantly, by reducing the number of messages they send. Two
out of four Jackal programs perform as well as, or better than the
equivalent RMI applications.

Our contributions are:

e \We show that existing optimizations for fine-grain DSM sys-

tems can be implemented more aggressively using global, source-

level analysis.

e \We discuss a compiler optimization to aggregate access checks
for object graphs; this improves sequential performance, and
reduces network roundtrips.

e \We discuss a compiler optimization to selectively do computa-
tion migration; this may reduce network roundtrips.

Both these optimizations depend on source-level code informa-
tion and global and interprocedural analysis.

e \We present a performance analysis of the resulting system for
some applications and compare them against a highly optimized
message-passing implementation [20] (RMI) on the same plat-
form.

The paper is structured as follows. Section 2 summarizes Java’s
memory model. Section 3 describes Jackal and its implementa-
tion. Section 4 discusses the application of static analyses to ex-
isting fine-grain DSM optimizations. Sections 5 and 6 describe
Jackal’s object-graph and computation-migration optimizations, re-
spectively. Section 7 studies Jackal’s performance on a Myrinet-
based cluster. Section 8 discusses related work. Section 9 con-
cludes the paper.

2. JAVA'SMEMORY MODEL

We briefly summarize Java’s memory model; for a detailed de-
scription we refer to the language specification [10] and Pugh’s cri-
tique of the memory model [22].

The memory model allows each Java thread to cache variables
in its working memory. A thread’s working memory must (concep-
tually) be flushed to main memory at each synchronization point.
A synchronization point is a lock (unlock) operation that corre-

sponds to the entry (exit) of a synchronized block of code. Lock
and unlock operations must flush a thread’s working memory, but
an implementation is allowed to flush sooner, even after every write
operation.

In contrast with entry consistency [3], Java’s memory model
does not couple locks to specific objects or fields. In particular,
different fields of one object may be protected by different locks,
so that those fields can be updated concurrently without introduc-
ing race conditions. This programming model is more flexible than
entry consistency, but makes it more difficult for a DSM imple-
mentation to combine synchronization and cache-coherence traf-
fic. Competing memory models, such as HLRC as implemented in
Treadmarks [17] combine synchronization messages with write no-
tices, but still incur multiple roundtrips for simple critical sections.

3. IMPLEMENTATION

Jackal consists of an optimizing Java compiler and a runtime
system (RTS). The compiler translates Java sources into Intel x86
code rather than Java bytecode. The compiler generates software
access checks; the optimizations to reduce the number and cost of
these checks are the main topic of this paper.

The runtime system distributes Java threads in a round-robin
fashion over idle processors and implements Jackal’s cache-coherence
protocol. While this protocol is described in [23], we review it here
for self-containedness.

3.1 Coherence Protocol and Access Checks

Jackal’s coherence protocol allows processors to cache a region
created on another processor. A region is either a complete Java
object or a slice of an array. To reduce false sharing, arrays are par-
titioned into contiguous but independent 256-byte regions. Since
we believe false sharing within objects is uncommon, objects are
never stored in multiple regions. The processor that allocates a re-
gion is called the region’s home node and always provides storage
for the region. (In terms of Java’s memory model, a region’s home
node provides that region’s main memory.)

Each region occupies a virtual-address range in a single, shared
address space. A region’s home node and the caching processors
all store their copy of a particular region at the same virtual address.
The shared address space is divided into P disjoint parts, where P
equals the number of processors. Each processor allocates memory
only in its own partition, so that computing a region’s home node
from its virtual address amounts to one divide operation.

Jackal employs an invalidation-based, multiple-writer protocol
that combines features of HLRC [32] and TreadMarks [17]. Jackal
does not use a single-writer protocol because it would force the
compiler to mark the end of each read/write operation, which re-
duces the opportunity to lift access checks. In addition, end mark-
ers increase sequential overhead. As in HLRC and TreadMarks,
modifications are flushed to a home node and twinning and diffing
is used to allow concurrent writes to shared data.

The run-time data structures related to the coherence protocol
are shown in Figure 1. All threads on one processor share one copy
of a cached region. Java’s memory model, however, requires that
each thread maintain its own cache-state vector for each region.
Each thread therefore maintains a present and a dirty bitmap, each
of which contains one bit per 64 bytes of heap. Objects are 64-
byte aligned to map a single object to a single bit in the bitmap. To
reduce memory usage, pages for these bitmaps are allocated lazily.

The present bit in a thread T’s bitmap indicates whether T re-
trieved an up-to-date copy of region R from R’s home node. A
dirty bit in thread T’s bitmap indicates whether T wrote to region
R since it fetched R from its home node.
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Figure 1: Runtime system data structures.

If the present bit is not set, the access-check code invokes the
runtime system to retrieve an up-to-date copy from the region’s
home node. When the copy arrives, the runtime system stores the
region at its virtual address and sets the accessing thread’s present
bit for this region. This cached region copy is called a processor’s
working copy of a region. The runtime system stores a pointer to
the region in the accessing thread’s flush list. In the case of a write
miss, the runtime system also sets the region’s dirty bit and cre-
ates a twin, a copy of the region just retrieved, unless such a twin
already exists.

A cached region copy remains valid for a particular thread until
that thread reaches a synchronization point. At a synchronization
point, the thread empties its flush list. All regions on the thread’s
flush list are invalidated for that thread by clearing their present
bits for that thread. Regions that have their dirty bits set are written
back to their home nodes in the form of diffs (and the dirty bits are
cleared). A diff contains the difference between a region’s working
copy and its twin. The home node uses the incoming diff to update
its own copy. Region flushes to the same home node are combined
into a single message.

The protocol described so far invalidates and possibly flushes all
data in a thread’s working memory at each synchronization point.
Since this potentially leads to much interprocessor communication,
our implementation uses an optimized version of this protocol that
still adheres to the memory model. In particular, it is not necessary
to invalidate and flush a region that is accessed by only a single pro-
cessor or that is only read [19]. Jackal’s lazy flushing is evaluated
and described in detail in [23].

3.2 Synchronization

Logically, each Java object contains a lock and a condition vari-
able. Since threads can access objects from different processors,
Jackal provides distributed synchronization protocols. Briefly, an
object’s home node acts as the object’s lock manager. To acquire
a lock, a thread sends a lock request message to the lock manager
and waits. If necessary, the lock manager creates a thread that waits
until the lock is released. When the lock is available, the manager
replies with a grant message, otherwise a thread needs to be created
to wait for the lock to be released. To unlock, the lock holder sends
a unlock message to the home node.
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if (condition) {

read-check (a)
} else {

write-check(a)
1

write-check (a)
Figure 2: Access check removal

4. CONVENTIONAL OPTIMIZATIONS

To improve performance, Jackal compiler removes superfluous
access checks, aggregates regions and objects and co-allocates threads
and regions. Although array aggregation and fully redundant access-
check removal are not new, the versions implemented in Jackal are
generally stronger than those implemented in for example Shasta [25],
due to the heavy use of interprocedural and global analysis.

4.1 Removing Access Checks

Jackal’s compiler frontend adds access checks to all heap ac-
cesses. Since these access checks add considerable runtime over-
head, the compiler’s backend optimization passes try to remove as
many checks as possible. An access check consists of six x86 in-
structions. If two access checks are sufficiently close to each other
to allow common subexpression elimination, one or two instruc-
tions can be eliminated (parts of the address calculations).

Since it is a source-level compiler, Jackal can perform inter-
procedural and global program analysis. Systems based on bi-
nary rewriting cannot, in general, perform interprocedural analysis:
they cannot handle indirect calls (which includes the virtual func-
tion calls found in C++ and Java) or indirect jumps (introduced
by switch statements compiled to jump tables). The frontend of
Jackal’s compiler, in contrast, can determine sets of virtual-function
call targets (by selecting all methods from all derived classes that
implement some method prototype) and maintain label lists for
switch statements. This information is passed on to the compiler
backend which uses it to remove access checks.

The compiler’s backend uses forward interprocedural data-flow
analysis over a program’s control-flow graph (CFG) to remove ac-
cess checks. An access check for address x at program point p can
be removed if x has already been checked on all paths that reach p,
but only if none of these paths contains a synchronization state-
ment. Figure 2 illustrates this redundancy analysis. First, a forward
data-flow pass discovers that all access checks in the example op-
erate on the same object a. Since a is checked on all paths that lead
to it, the third check is redundant. The read-check is replaced by a
write-check to preserve correctness.

Note that the current implementation needs full redundancy for
check elimination. Partial redundancy elimination (PRE/LCM [18])
would reduce the number of checks even further. In the example,
PRE could potentially remove all access checks and place a single
access check in front of the if statement. The difficulty in imple-
menting PRE for access check elimination lies in lifting the address
calculations (the ’a’ in the example) while not violating Java’s pre-
cise exception model.

The analysis outlined above is complicated by Java’s ability to
extend classes at runtime by loading bytecode from network or file.
The Jackal RTS supports compilation and loading of bytecode at
runtime [20]. If dynamic class loading is allowed, the compiler
may inspect potential callees at a call site only if the complete set
of callees can be determined at compile time. (This is the case if a
static, final or private function is called.)



Otherwise, the compiler conservatively assumes that at least one
of the callees contains a synchronization point.

To increase the effectiveness of interprocedural analysis, the Jackal

compiler can be instructed to make a closed-world assumption,
which means that dynamic class loading is guaranteed not to occur
in the program that is being compiled. If the compiler is allowed
to make this assumption, function inlining becomes more effective
as well. Access-check removal benefits from inlining, because it
makes more code (including access checks) available to the opti-
mizer.

The compiler can also use call-graph information to remove ac-
cess checks to the this pointer. When all calls to a function orig-
inate from either a constructor or a Thread.run() method and the
compiler is allowed to make the closed-world assumption, then we
can safely remove all checks on this (until a synchronization point
is seen), because we know that we are executing this function on
the home node.

The compiler (by default) also does escape analysis [6]. Escape
analysis detects which objects will never escape the thread that cre-
ated them (or their creating function’s life time). When such an
object has been detected, all checks to the object can be removed
and the object can be allocated on the stack. To generalize our es-
cape analysis, we do not actually allocate the objects on the call
stack but maintain a separate object stack per thread. This allows
objects created in constructors to outlive their creating constructor
by not restoring the object stack at a constructor’s exit.

When such an object is passed to another method and that call
site is the only location that method can be called from, (again mak-
ing a closed world assumption), access checks to that parameter are
removed as well (recursively). In the future, we intend to make the
analysis stronger still, by specializing called functions when es-
caped objects are passed.

4.2 Array Aggregation

If array elements are accessed in a loop, the access checks to
array elements may sometimes be lifted out of the loop, and be
replaced by an aggregate array slice access check before the loop.
The benefits are improved sequential run time and increased data
throughput by allowing streaming of multiple array regions.

Array access check lifting is impossible if the loop is unsafe in
that it contains synchronized blocks or calls to methods that (may)
contain synchronized blocks. Interprocedural analysis is important
to detect safe methods.

If a loop is safe and the compiler finds an access check to an array
element inside a loop, the relation between the indexing expression
and the loop control variables is analyzed. If the check does not
depend on the loop control variables, it is lifted from the loop.

If the array indexing expression is loop dependent, we try and
lift the array check. Loop dependence is defined here as dependent
on a loop induction variable which is a tuple {variable, start value,
step, multiplicand, modulo} as used in strength reduction. This
allows complicated strides as the loop induction variable tuple is
passed whole to the runtime system. If the bounds of the index
can be precomputed as a function the loop control expressions, an
aggregate check to fetch the required array slice is inserted before
the loop, and the access check within the loop are removed.

If the index expression is not loop independent but the index
bounds cannot be calculated, a call to the RTS is inserted before
the array to request the whole array.

A trade-off is that when the rule to determine array aggregation
misfires, parts of the array that are not used are also mapped in.
This might for example happen when the array access check inside
the loop is located inside an “if” statement. Also, when the loop
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class Nested {
int x;

class Outer ({
Nested n =
int y;

new Nested() ;

int get () {
return y + n.x;

}

static public void main (Stringl[]
Outer o = new Outer() ;
int x = o.get();
1
1

arg) {

Figure 3: Object-graph aggregation example.

iterates only a few times (say 2 or 3 times) over an array which has
already been mapped, the costs of calling the runtime system may
be larger than with the inlined assembler check.

5. OBJECT-GRAPH AGGREGATION

Object-graph aggregation is the pointer equivalent of array ag-
gregation. A faulted region frequently contains references to ob-
jects that are subsequently accessed, causing more cache misses.
The compiler detects such access patterns, and replaces access checks
on the individual objects in the object graph with a single access
check on the graph’s root object. If the check fails, the entire
graph is retrieved. Like array aggregation, this improves sequen-
tial and parallel performance by, respectively, eliminating access
checks and reducing the number of roundtrips required to fault in
related objects.

Figure 3 illustrates this idea. The compiler detects that the in-
vocation of method get() on object o involves not only an access
check on o, but also on 0.n. An object graph is identified, rooted at
0, that has an edge to one other node, the allocation of the Nested
object. In main(), the access check on o is replaced with a aggre-
gate access check that validates both o and o0.n. The access check
on o.n in Outer.get() is removed.

To detect related objects, the compiler creates a heap approxima-
tion [9, 28] in which objects are identified by their allocation site.
Since the algorithm cannot distinguish between different run-time
objects that are created at the same allocation site, we will speak
of allocations, which represent all objects allocated from that site.
The algorithm produces a list of allocations, and, for each refer-
ence field of the corresponding objects, a list of allocations that the
reference points to.

The algorithm consists of an outer iteration that stops when the
allocation list and reference lists no longer change. Within an iter-
ation, the code for all available methods is traversed. For each reg-
ister or memory reference in the instruction stream, a list is main-
tained of allocations that it may point to. When an allocation site
is encountered for the first time, it is registered in the allocation
list. The reference that results from any allocation is propagated
through the instruction stream, following assignments, and through
method calls, following parameter passing. When an assignment
of an allocation A to a reference field f of an object correspond-
ing to allocation B is encountered, A is added to the reference list
of B.f. Arrays of objects are special. If the compiler cannot com-
pute the value of an index expression for such an array, then no
distinction is made between different elements of the arrays: if any



element refers to an allocation, all elements are considered to re-
fer to it. When the algorithm stabilizes, each variable and memory
reference has been associated with a set of allocations that it may
point to.

A heap approximation is a graph whose nodes are the alloca-
tions, and whose edges represent a reference from a field of the
source allocation to the target allocation. In the graph, we search
for allocations that are the only entry point to a directed acyclic
subgraph: there should be no other paths in the code by which any
allocation in the DAG is accessed. When such a subgraph is de-
tected, access checks to its interior nodes can be removed and the
whole subgraph may be transferred when an access check to its root
fails.

To be a candidate for aggregation, the subgraph must not contain
any ’forbidden’ objects; this includes Thread objects and objects
on which a lock, unlock, wait or notify call is invoked. Aggregating
objects in the latter (synchronization) category would cause thrash-
ing.

Since DAGs may contain nested DAGS, a trade-off emerges in
the marking of object graphs. We must choose an ideal object-
graph depth. If the object graph is too deep, large portions of the
object graph may be left unused after they have been faulted in. If
the threshold is set too low, unnecessary cache misses will occur.
Currently, Jackal requires the programmer to set the object graph
threshold at compile time.

Another trade-off occurs when an object graph is only modified
at its leaves; without object-graph aggregation only those leaf ob-
jects would be flushed, while the interior nodes would be in read-
only mode, allowing lazy flushing. With object-graph aggregation
the entire object graph will be marked dirty, causing the entire ob-
ject graph to be flushed and re-fetched. This extra communication
must be traded against the gains in sequential code speed and bulk
data transfer.

6. COMPUTATION MIGRATION

Computation migration [13] is a mechanism that moves part or
all of a computation and its state to the data used by that computa-
tion. This may be more efficient than moving multiple data objects
to the computation or than repeatedly moving the same data ob-
ject to the computation, which occurs typically with e.g. barrier
objects. Jackal uses computation migration in two ways: to com-
bine data and synchronization traffic and to co-locate the execution
of a thread constructor with the data created by that constructor.

Java programmers do not indicate which locks protect which data
items. This makes it difficult to combine data and synchronization
traffic: Jackal may have to communicate multiple times to acquire
a lock, to access the data protected by the lock, and to release the
lock. Frequently, however, the data stored in a shared object is
protected by that object’s lock. Figure 4 illustrates this case. Recall
that the home node of an object acts as the manager of the lock
that is part of the object (see Section 3.2). Without computation
migration, the execution of inc() therefore results in three network
roundtrips to x’s home node if the caller of inc() is not on x’s home
node: one roundtrip to acquire x’s lock, one to fetch x’s data, and
one to flush the modified data, and a final message to release x’s
lock.

Jackal’s compiler detects and optimizes synchronized blocks such
as the one in Figure 4. Under the conditions described below, the
compiler will generate a separate function for such a synchronized
block. This new function will be run on the synchronization ob-
ject’s home node and will be invoked as a Remote Procedure Call
(RPC) by the thread that calls inc(). Stack variables in the call-
ing code that are live just before the RPC call is issued are copied
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int inc(AtomicInt x, int delta) {
int old;

// migrate following block
synchronized (x) {

old = x.count;

x.count += delta;

return old;

Figure4: Computation migration example.

into the RPC’s request message and act as parameters to the new
function. The compiler identifies these live variables automatically.
Any stack variables that are still live at the end of the migrated com-
putation (i.e., old) are marshaled into the reply that is sent to the
caller. In this scheme, the execution of function inc() requires only
a single roundtrip to the home node. The request message contains
the value of parameter delta, which is live in inc(). At the home
node, the lock is acquired, x.count is incremented, and the lock is
released.

As an extra optimization, the compiler checks whether any object
pointers are used after the synchronized statement. If the node that
ran the migrated computation is also the home node for any of these
objects (or object graphs), then it will piggyback those objects or
object graphs on the reply. This optimizes common patterns such
as the retrieval of an object or an object graph from a shared data
structure.

The computation-migration optimization is triggered only when
the code inside the synchronized block can be (conservatively) proved
to terminate in finite time. The execution time of the synchronized
block is estimated by counting instructions and considering loop
nesting. If a synchronized block is deemed to be long-running, the
optimization will not be triggered, to preserve load balance.

Jackal’s compiler applies computation migration also Thread-
object constructors. Such constructors are often all executed by
a program’s main thread to create additional worker threads. It is
frequently the case that the data accessed by a worker thread is
allocated in the worker thread’s constructor. If these constructors
all run on the same processor, all data objects created will have that
processor as their home node, even though the new threads will be
run on other processors. The compiler therefore replaces Thread-
object allocations and constructor calls with an RTS call that ships
the constructor to run at the same processor that the thread will
run on. This ensures that the new thread and all objects it creates
reside on the same processor. This will save mapping in data that
typically belongs with the thread. Co-allocating threads and objects
in this way is difficult for a binary instrumentor, because it requires
knowledge of the Java class and interface hierarchy.

7. PERFORMANCE

In this section we study the performance of Jackal. All tests were
performed on a cluster of 200 MHz PentiumPros, running Linux,
and connected by a Myrinet [5] network. We use LFC [4], an
efficient user-level communication system.On our hardware, LFC
achieves a minimum roundtrip latency of 20.8 s and a throughput
of 27.6 Mbyte/s (for a 256 byte message, including a receiver-side
copy).

Jackal was configured so that each processor has a maximum of
32 Mbyte of local heap and 32 Mbyte of cache for caching regions
allocated by other processors. In all of the performance evaluations
below, the compiler is allowed to make a closed world assumption.
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Figure 5: Relative sequential execution times.

7.1 Microbenchmarks

We measured the overhead of access checks by timing the traver-
sal of a 10,000-element linked list on a single processor both with
and without access checks. This benchmark performs one access
check per list element. On average, each access check costs 0.049 s,
or approximately 10 cycles.

To determine the latency of object transfer, we measured the
time needed for one processor to traverse a linked list of empty el-
ements created by another processor. The measured time includes
the roundtrip time to the home node and the costs for page mapping,
adding regions to the traversing thread’s flush list, and locking. We
measured an average latency of 35 s per node of the linked list.

The throughput obtained by transferring a large array of inte-
gers is 5.1 Mbyte/s. This throughput is independent of array size,
because arrays are retrieved region by region. If array aggrega-
tion is enabled, the array is transferred in units of 768 bytes (to
fit in one 1024 byte LFC packet), which results in a throughput of
24 Mbytel/s.

We also measured the impact of object-graph aggregation by mi-
crobenchmark tests. A sequential program without access checks
traverses an array of 1000 binary trees, each consisting of a root and
two empty subtrees, in 0.95 ps per tree. With unoptimized checks,
traversal takes 139 ps per tree; this time also includes the time to
register the objects in the thread’s flush list. With object-graph ag-
gregation enabled, traversal takes 46 ps per tree: access checks to
the subtrees are removed. In a parallel test program, one machine
creates the tree, the other traverses it. With unoptimized checks,
this costs 274 ps per tree; three roundtrips per tree are necessary.
Enabling object-graph aggregation reduces this to 124 s per tree;
only one roundtrip per tree is necessary.

7.2 Application Suite

Our application suite consists of four multithreaded Java pro-
grams: ASP, SOR, TSP, and Water. Besides the multithreaded,
shared-memory versions of these programs, we also wrote equiva-
lent message-passing versions of these programs. These programs
all use our fast Remote Method Invocation (RMI) to communi-
cate explicitly. Section 7.4 compares the performance of the multi-
threaded programs running on Jackal with the performance of these
RMI programs.

7.3 Sequential Application Performance

Figure 5 shows the relative sequential performance of all applica-
tions. All applications were compiled and run with Jackal’s native
Java compiler and with version 1.3 of IBM’s Just-In-Time (JIT)
compiler. To factor out JIT compilation time, each application iter-
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ates four times. We assume that all compilation takes place during
the first iteration and report the average execution time of the last
three iterations.

For Jackal, we compiled each program in three ways:

e with access checks, without compile-time access-check opti-
mizations (Jackal/Basic)

e with access checks, with all compile-time access-check opti-
mizations (Jackal/C.M.+Aggregation)

e without access checks (Jackal/No-Checks)

The figure shows the execution time of all configurations relative
to Jackal/No-Checks. The absolute execution times in seconds of
this version are given on the horizontal axis.

In general, Jackal’s compiler generates good sequential code.
Version 1.3 of IBM’s JIT compiler is the fastest JIT compiler cur-
rently available [7, 27]. With the exception of Water, Jackal/No-
Checks outperforms the JIT compiler.

Adding access checks without optimization increases the sequen-
tial execution times by 222% on average. Jackal’s access-check op-
timizations reduce this overhead on average to 9%. In the case of
ASP and SOR, access-check overhead is almost entirely eliminated
by array check aggregation. The inner loop of both algorithms tra-
verses and updates complete matrix rows. This is detected by the
compiler, which lifts all access checks out of the inner loop. The
overhead of the remaining, lifted access checks is negligible.

In the case of TSP, unoptimized Jackal performance is bad be-
cause the majority of the work is done in a small recursive func-
tion that (initially) contains seven access checks. The object-graph
aggregation optimization discovers that all these checks can be re-
moved from the recursive function. The checks can either be re-
moved because they check the this pointer, or they can be lifted to
the initial caller of the recursive function and combined into two
object-graph aggregate checks for the partial path and for the city
distance table. The recursive function is a virtual method, so a bi-
nary rewriter cannot remove the access checks.

In Water, the data structure that is operated on in the inner loop is
a two-dimensional array, which in the unoptimized version requires
twice four array access checks and ten array element checks for
each inner loop iteration. Together, array aggregation and object-
graph aggregation reduce this to one check within the inner loop
and one aggregate outside the inner loop.

7.4 Parallel Application Performance

This section compares the application performance of various
Jackal configurations and an equivalent, hand-optimized RMI pro-
gram. The RMI programs use a highly optimized RMI implemen-
tation [20] and run on the same hardware and communication plat-
form (LFC) as Jackal. An RMI roundtrip on this platform costs
38 ps, maximum array throughput is 54 MByte/s. Both the Jackal
and the RMI programs were compiled using Jackal’s Java compiler.
RMI gives the programmer almost full control over the communi-
cation that takes place. In particular, the programmer can combine
data and synchronization messages, transfer entire arrays in a sin-
gle roundtrip, and transfer multiple objects in a single roundtrip. In
Jackal, these optimizations can be performed only after the com-
piler has discovered the opportunity of performing them.

The data set for each application is small. Fine-grained applica-
tions show RTS and access check overhead much more clearly than
coarse-grained applications, which communicate infrequently. The
differences for the various optimizations come out markedly; also,
the comparison with the RMI implementation becomes extremely
competitive, since the RMI implementations must be considered
hand-tuned.
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Figure 6: Jackal and RMI speedups.

Below we discuss the performance of each application using Fig-
ure 6 and Figure 7. Figure 6 shows speedups for the RMI pro-
grams and for four Jackal configurations. All speedups are rela-
tive to the sequential Jackal/No-Checks execution time. We sep-
arately consider the effect of two optimizations: computation mi-
gration (synchronized blocks) and aggregation (arrays and object
graphs). Computation migration of Thread constructors is always
enabled except in the Basic configuration, since Jackal’s perfor-
mance severely degrades without it.

Figure 7 shows the message counts and network data volumes
on 16 processors.

ASP. The All-pairs Shortest Paths (ASP) program computes the
shortest path between any two nodes in a 500-node graph. Each
processor is the home node for a contiguous block of rows of the
graph’s shared distance matrix. In iteration k, all threads —one per
processor— read row k of the matrix and use it to update their own
rows.

The communication pattern of ASP is a series of broadcasts from
each processor in turn. Both the RMI and the Jackal program im-
plement the broadcast with a spanning tree. A spanning tree is used
for the shared-memory (Jackal) implementation to avoid contention
on the data of the broadcast source. The RMI implementation in-
tegrates synchronization with the data messages and uses only one
message (and an empty reply) to forward a row to a child in the
tree. This message is sent asynchronously by a special forwarder
thread on each node to avoid latencies on the critical path.

Jackal’s computation migration optimization significantly increases
speedup since it allows the combining of data with the synchro-
nization messages. Fetching a broadcast row now costs only one
round-trip. With array aggregation enabled, the compiler detects
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Jackal optimization ASP | SOR | TSP | Water
Basic 29.0 | 20.9 | 28.3 | 338.8
Computation Migration || 15.3 | 19.9 | 16.5 | 329.9
Aggregation 273 | 18 | 198 | 134
C.M. + Aggregation 153 | 1.0 8.4 12.2
RMI 151 | 23 | 45 | 155

Jackal vs. RMI data message counts * 1000

Jackal optimization ASP | SOR | TSP | Water
Basic 393 | 46 | 409 | 328
Computation Migration || 0.1 3.1 7.0 | 127
Aggregation 36.1 | 54 | 410| 221
C.M. + Aggregation 0.1 41 | 50 | 149
Jackal control message counts * 1000; RMI has no control
messages
Jackal optimization ASP | SOR | TSP | Water
Basic 159 | 24 | 05 3.9
Computation Migration || 143 | 2.3 | 0.3 3.7
Aggregation 157 | 26 | 04 5.2
C.M. + Aggregation 143 | 25 | 0.2 5.1
RMI 144 | 24 | 02 4.7

Jackal vs. RMI data volume in MByte

Figure7: Jackal and RMI communication on 16 CPUs



that the inner loop operates on whole rows, so the access checks in
the inner loop are replaced by one array aggregate check before the
inner loop. A completed row is faulted in at once for each outer
loop iteration. The speedup of the RMI program remains better be-
cause it uses asynchronous forwarding of rows in its spanning-tree
broadcast. An alternative RMI implementation with synchronous
forwarding gave a speedup no better than the Jackal version.

The data volume and number of messages exchanged are compa-
rable for the RMI version and the Jackal version with computation
migration and aggregation.

SOR. Successive Over-Relaxation (SOR) is a well-known itera-
tive method for solving discretized Laplace equations on a grid.
The program uses one thread per processor; each thread operates
on a number of contiguous rows of the matrix. In each iteration,
the thread that owns matrix partition t accesses (and caches) the
last row of partition t — 1 and the first row of partitiont + 1. We ran
SOR with a 2050 x 2050 (16 Mbyte) matrix.

The Jackal version of SOR attains excellent speedup. This is en-
tirely due to Jackal’s array aggregate optimization. As in ASP, the
Jackal compiler discovers that it can combine all access checks in
SOR’s innermost loop into a single check for the whole row. When
this check fails, the entire row is sent to the requesting processor.
As a result, Jackal achieves comparable speed-up, message count,
and data exchange volume as the RMI implementation. The RMI
message count consists of an empty request and a reply carrying the
row; in Jackal, the request is counted as a control message, only the
reply carrying the row is counted as a data message.

TSP. TSP solves the Traveling Salesman Problem for a 15-city
input set. First, processor zero creates a distance table to hold the
distances between each city and a list of job objects, each contain-
ing a partial path. Next, a worker thread on every processor tries
to steal jobs and complete partial paths from the list. The cut-off
bound is encapsulated in an object that contains the length of the
shortest path discovered thus far. To avoid non-deterministic com-
putation (which may give rise to superlinear speedup), the cut-of
bound has been set to the actual minimum for this data set. Conse-
quently, the speedup attained by all implementations is much lower
than in the case of initially unbounded search, where linear speedup
is typical.

The speedup numbers for the configurations with object-graph
aggregation disabled suffer from inferior sequential code, see Sec-
tion 7.2. Without computation migration, faulting in a new partial
path takes more data messages (for the Job object and the partial
path contained in it) and many more control messages: some for
requesting the regions, and some for synchronization control. With
all optimizations enabled, a partial path is obtained with one round-
trip, where the migration reply carries the object graph for the par-
tial path. The RMI program and the optimized Jackal programs
transmit approximately the same amount of data.

Water. Water is a Java port of the Water-n-squared application
from the Splash benchmark suite [29]. The program simulates a
collection of 343 water molecules. Each processor is assigned a
partition of the molecule set and communicates with other proces-
sors to compute inter-molecule forces.

Most communication in Water stems from read and write misses
on Molecule objects and the sub-objects referenced by them: force,
acceleration, and position vectors for each atom, which are stored
in separate arrays and are written only by their owner thread.

The RMI version requests the slices of the Molecule array it
needs in each outer iteration in one RMI from each other proces-
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sor. In the unoptimized Jackal version, the objects that make up
the Molecules are faulted in one at a time inside the inner loop.
Consequently, the unoptimized Jackal program makes many more
roundtrips than the RMI program to retrieve all molecule data.

Jackal’s loop analysis and heap analysis succeed in determining
the access patterns, so that slices of Molecule arrays are obtained
with one request for each other processor. However, each object
that makes up a Molecule must be managed separately upon arrival,
flush and protocol change. Moreover, changes to and from read-
only state of the Molecules are frequent during the iterations, and
this gives rise to a number of protocol messages that is proportional
to the number of objects that make up the Molecules.

In the future, Jackal’s compiler will perform object inlining anal-
ysis which would transform each Molecule into one object in stead
of four. To assess the performance impact, we did the same trans-
formation by hand. The speedup on 16 processors then becomes
11, and the amount of protocol messages is divided by four. The
speedup is still less than RMI’s, which must be attributed to more
procotol overhead. We do not show this improved performance in
Figure 6, since we explicitly want to avoid application-level tuning
for Jackal.

8. RELATED WORK

Most DSM systems are either page-based [17, 19] or object-
based [2, 3, 15]. Jackal manages pages to implement a shared
address space in which regions are stored. For cache coherence,
however, Jackal uses small, software-managed regions rather than
pages and therefore largely avoids the false-sharing problems of
page-based DSM systems. Like page-based DSMs supporting re-
lease consistency, we use twinning and diffing, albeit not over pages
but over single objects.

Shasta [25] and Sirocco [14] use binary rewriters to insert and
optimize software access checks. Such binary rewriters have, in
general, less information than a source-level compiler. In partic-
ular, interprocedural analysis in the presence of virtual-function
calls is difficult or impossible for binary rewriters. Jackal uses
such interprocedural analysis to optimize access checks. In ad-
dition, Jackal uses type information to find groups of related ob-
jects. It would be interesting to compare the performance of both
approaches. Unfortunately, such comparisons are, at present, dif-
ficult, due to the differences in the programming languages, the
memory models, and the hardware platforms.

Some DSM systems have successfully used compiler-generated
data-access hints. Dwarkadas et al.[8] describe a system that uses
regular-section analysis [11] for explicitly parallel (Fortran) pro-
grams [8]. Their compiler analysis identifies producer-consumer
relationships; these are then used to generate hints that allow the
underlying TreadMarks DSM system to aggregate data and syn-
chronization messages. The analysis, however, applies only to ar-
rays, whereas Jackal also supports heap-allocated structures.

Object-based systems like CRL [15], Midway [3], and Orca [2]
might seem a natural way to implement distributed shared memory
for an object-oriented language like Java. These systems, however,
use a form of entry consistency [3] and therefore couple locks to
objects. In Java, each object conceptually contains a lock, but this
lock can protect any piece of shared data, not just the data stored in
the object that contains the lock. Since this is a very loose associa-
tion between lock and object, Jackal has to work harder to combine
data and synchronization traffic because no programmer assistance
is available. Implementing computation migration requires com-
piler support, both to detect opportunities and implement computa-
tion migration.

Compiler-supported computation migration is used in Prelude [13]



and Olden [24]. (Like Jackal, both these systems use compiler sup-
port to find the live variables that must be shipped to the remote
processor.) Both Prelude and Olden use computation migration to
enhance locality by eliminating multiple roundtrips to remote data
objects (using programmer annotations). In Jackal, caching and
aggregation are completely compiler detected and enforced.

Compiler supported object inlining achieves the same effect as
our tree prefetching optimization, although our technique is more
widely applicable as it allows aliasing between objects and variable
sized arrays. Object inlining has been explored for example in [16].

MCRL [12] uses computation migration in a DSM system. Like
CRL, it requires the user to encapsulate reads and writes to shared
data between calls to the RTS. Read operations run on the local pro-
cessor; write operations run on the home node of the data. CRL [15]
automatically combines synchronization and data transfer because
it uses an entry-consistent memory model.

Several other DSM systems focus on Java. Java/DSM [31] im-
plements a JVM on top of TreadMarks [17] and is therefore page-
based. Jackal, in contrast, uses software access checks and a small
coherence unit. DOSA [30], derived from Treadmarks, is an ap-
proach to build a DSM on top of modern object-oriented languages.
It does so by using their strict type systems to implement memory
consistency. They add a layer of indirection around object refer-
ences to allow objects to move addresses upon receiving a write
fault. However, it implements little compiler based optimization.

Hyperion [21] adds access checks to Java bytecodes. In contrast
with Jackal, Shasta, and Sirocco, however, Hyperion is sensitive to
false sharing, because it caches all shared Java objects, including
arrays, in their entirety.

cJVM, like Jackal, strives to provide a complete single system
image [1] using transparent RPC to access remove objects. It does
so by creating a cluster-aware JVM using transparent RPCs to ac-
cess remote objects where Jackal uses object caching by default.
c¢JVM differs from our system in that is performs no object-graph
aggregation nor does it implement a tradeoff between data and
function shipping.

9. CONCLUSION

We have described and evaluated aggressive, source-level com-
piler optimizations for a fine-grain DSM system. Two classes of
optimizations are key: aggregation optimizations and computation-
migration optimizations. Aggregation optimizations aggregate ac-
cess checks on multiple, related data objects — arrays or object
graphs — into a single check that faults in all related objects in
a single cache-protocol transaction (typically one roundtrip to a
home node). Aggregation optimizations reduce the average access-
check overhead in the sequential executions of our Java programs
to less than 10%. At the same time, these optimizations reduce
the number of roundtrips required to retrieve up-to-date copies of
shared regions, and therefore also improve parallel-application per-
formance. Computation migration is used to combine synchroniza-
tion and data traffic, as in entry-consistent DSMs, but without re-
quiring an entry-consistent programming model.

Both optimizations rely heavily on extensive static analyses, in-
cluding interprocedural analysis, heap approximation, escape anal-
ysis, etc. We have implemented these analyses and the optimiza-
tions enabled by them in a DSM for the Java programming lan-
guage, but most of the analyses and optimizations are general and
can be applied to other languages. The analyses, however, cannot
easily be performed by a binary rewriter, because they rely type in-
formation, the ability to calculate the set of called functions at each
call site, and the absence of complex pointer arithmetic.
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Two out of four of our optimized applications perform as well as,
or better than, equivalent, hand-coded message-passing programs
and all optimized applications perform significantly better than ver-
sions that do not employ aggregation or computation migration.
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