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Abstract. This work proposes the Improved Differential Evolution (IDE) for
single objective optimization problems with continuous variables. The pro-
posed IDE uses improved Differential Evolution (DE) operators (mutation and
crossover) in order to explore the state space of possible solutions with greater
effectiveness, as well as to accelerate its convergence speed. Furthermore, an
experimental analysis with the proposed IDE is presented using six well-known
benchmark problems of single objective optimization. The results clearly show
that the proposed IDE converges faster, as well as �nd better solutions than the
Standard DE (SDE).

1. Introduction
Evolutionary Algorithms (EAs) are a powerful class of stochastic optimization algorithms
and have been widely used to solve complex problems which cannot be solved analyti-
cally. The most popular EA is the Genetic Algorithm (GA) [Holland 1975]. The GAs
were developed by Holland [Holland 1975] motivated by Charles Darwin Evolution The-
ory [Darwin 1859]. The main goal of [Holland 1975] was to �nd ways in which the
mechanisms of natural adaptation might be integrated into computer systems. The GAs
are used successfully in several kind of real-world applications due to its high search
power in state spaces, being widely applied to optimization and machine learning prob-
lems. The GAs allow the population evolution towards sub-optimal or optimal solution to
a given problem by performing a search in the multiple trajectory simultaneously, being
appropriate to parallel computing [Franklin 2001].

Recently, many works have been proposed to improve the GAs in order to ac-
celerate its convergence speed and to prevent the algorithms from getting trapped into
local minima of the objective function [Bersini and Renders 1994,Yao and Liu 1996,Gen
and Cheng 1997, Chellapilla 1998, Angelov 2001, Leung and Wang 2001, Leung et al.
2003, Tsai et al. 2004]. In this way, these modi�ed GAs can �nd optimal or close-to-
optimal solutions of a given problem using an individuals' small number in the population
and having high speed convergence due to its optimal genetic operators.

Despite the improvements achieved so far, GAs in optimizations problems are still
considered time consuming and further efforts are made to overcome this limitation. An
interesting evolutionary strategy has been proposed in order to overcome this GAs limita-
tion [Storn and Price 1995,Storn 1999], referred to as Differential Evolution (DE), which
is a simple and yet powerful EA, that has demonstrated good convergence properties and
outperforms other well known EAs [Storn and Price 1995, Storn 1999, Brest et al. 2006].
In the DE [Storn and Price 1995, Storn 1999], all individuals have the same selection
probability, which means that the selection scheme does not depend on �tness function.



Such as in the GAs case, interesting DE improvements were also proposed in the liter-
ature to improve state space exploration and acceleration of convergence [Ali and Torn
2004, Vesterstroem and Thomsen 2004, Sun et al. 2005, Liu and Lampinen 2005, Brest
et al. 2006]. These works show that this kind of EA provides promising results, and can
quickly �nd optimal or close-to-optimal solutions to optimizations problems.

In this paper, the Improved Differential Evolution (IDE) is presented to solve sin-
gle objective optimization problems with continuous variables. It is based on the Differen-
tial Evolution (DE) proposed by [Storn and Price 1995,Storn 1999], but uses improved DE
operators (mutation and crossover) in order to explore the state space more ef�ciently, as
well as to quickly �nd optimal or close-to-optimal solutions, accelerating its convergence
speed. Besides, six well-known benchmark problems of single objective optimization are
used to assess performance of the proposed IDE. Since each benchmark problem has a
very large number of local minima, �nding satisfactory solutions becomes a great chal-
lenge. The results clearly show that the proposed IDE �nds optimal or close-to-optimal
solutions for all tested benchmark problems, and presents faster convergence speed when
compared to the Standard DE (SDE).

2. Fundamentals
2.1. Problem Description
Let f(x) be an objective function, where x = (x1, x2, . . . , xN) ∈ RN , and let l =
(l1, l2, . . . , lN) and r = (r1, r2, . . . , rN) be the feasible space solution of f(x) in RN .
This de�nes a single objective optimization problem as the minimization of an objective
function f(x) subject to the domain l ≤ x ≤ r (the domain of each xi is denoted by
li ≤ xi ≤ ri). Therefore, the main goal is to apply some technique in order to �nd the
optimal or close-to-optimal x vector values to minimize f(x).

2.2. Differential Evolution
In this section, it is presented a brief description of Differential Evolution (DE) procedure,
which is illustrated in Figure 1. More details will be supplied as follows. For further
details see [Storn and Price 1995, Storn 1999].

DifferentialEvolutionProcedure() {
G = 0;
initialize xG; // xG: population at generation G
evaluate f (xG); // f (·): evaluate function or �tness
while ( not termination condition ) {

for each individual (xk,G) from population xG {
perform the mutation operator (generating vi,G+1 by Equation (1));
perform the crossover operator (generating ui,G+1 by Equation (2));
perform the selection operator (generating xk,G+1 by Equation (4));

}
G = G + 1;

}
}

Figure 1. Differential evolution procedure.



The DE was created around the nineties, being developed by Storn [Storn and
Price 1995,Storn 1999] in the attempt to solve the Chebychev Polynomial problem. There
are several variants of the DE [Storn and Price 1995, Storn 1999]. In this work, we use
the DE scheme which can be classi�ed according to [Storn and Price 1995, Storn 1999]
as the DE/rand/1/bin strategy. This strategy is widely used in practice [Storn and Price
1995,Liu and Lampinen 2005,Sun et al. 2005,Brest et al. 2006] and will be described as
follows.

The DE is a novel parallel direct search method [Storn and Price 1995]. It uses
a population of NP parameter vectors xk,G, k = 1, 2, . . . , NP (i.e. possible solutions or
individuals), where NP denotes the number of individuals in the DE population and G
denotes the generation of the population (we have one population for each generation).
Each individual is represented by a N-dimensional parameter vector (N is the number
of optimization parameters) and its initial parameters are chosen randomly with uniform
distribution in the attempt to generate solutions throughout all the search domain.

According to Storn and Price [Storn and Price 1995] there are three DE operators:
mutation, crossover and selection. These operators are based on natural evolution princi-
ple in order to keep the population diversity, as well as to avoid premature convergence.
The crucial idea behind the DE is a scheme for generating trial parameter vectors [Brest
et al. 2006]. In this way, mutation and crossover operators are used to generate new
vectors (trial vectors). Then, the selection operator determines which of these vectors
will survive in the next generation. This procedure is repeated until a stop condition is
reached.

2.2.1. Mutation Operator

Let be the vectors xr1,G, xr2,G and xr3,G with randomly chosen indexes r1, r2 and r3
∈ [1, NP ]. For each target vector xk,G, a mutant vector (vi,G+1) is generated according
to [Brest et al. 2006]:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) with i 6= r1 6= r2 6= r3, (1)

where the term F ∈ [0, 2] is a real-valued number which controls the ampli�cation of
the difference vector (xr2,G − xr3,G). Note that indexes have to be different from each
other and from the running index so that there must be at least four. It is important to
mention that due to this operator, the target vector values may exceed their valid boundary
values. Whenever that happens, the corresponding values are truncated (projected) to their
upper/lower bounds.

2.2.2. Crossover Operator

The crossover operator is introduced to increase the mutation individuals diversity. Thus,
the target vectors are mixed with mutated vectors. This scheme generates the following
vector [Brest et al. 2006]

ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1), (2)



with
uji,G+1 =

{
vji,G+1 if r(j) ≤ CR or j = rn(i)
xji,G if r(j) < CR and j 6= rn(i)

, (3)

where terms j = 1, 2, . . . , D, r(j) ∈ [0, 1] denotes the j-th evaluation of a uniform random
generator number, CR ∈ [0, 1] is the crossover probability and rn(i) ∈ (1, 2, . . . , D) is a
randomly chosen index which ensures that ui,G+1 gets at least one element from vi,G+1.
Otherwise, no new parent vector would be produced and the population would not be
altered [Brest et al. 2006].

2.2.3. Selection Operator

The selection operator is responsible for the generation of the best sons (i.e. the vec-
tors with the best evaluations). Thus, a greedy selection scheme is used, and is de�ned
as [Brest et al. 2006]:

xk,G+1 =

{
ui,G+1 if f(ui,G+1) < f(xk,G)
xk,G otherwise . (4)

If, and only if, the trial vector ui,G+1 yields a better cost function value than xk,G,
then xk,G+1 is set to ui,G+1; otherwise, the old value xk,G is retained [Brest et al. 2006].

3. The Proposed Improved Differential Evolution
In this section, we introduce the Improved Differential Evolution (IDE). It uses improved
DE operators (mutation and crossover) in order to explore the state space more ef�ciently
and to enhance convergence speed. The IDE procedure is shown in Figure 2 and its details
will be presented in the next sections.

3.1. Initial Population Generation

The initial IDE population at generation G, de�ned by xG, is composed of randomly
generated individuals, which are possible solutions to the problem. It is given by,

xG = (x1,G, x2,G, . . . , xS,G), (5)

with
xS,G = (xS1,G, xS2,G, . . . , xSN,G), (6)

and
pmin ≤ xS,G ≤ pmax, (7)

where xG denotes the population at generation G; xS,G denotes S-th individual of the pop-
ulation xG; xSN,G denotes the N-th parameter of the S-th individual of the population; S
denotes the population size (number of individuals); N denotes the number of individual
parameters (variables of the problem). The terms pmin = (pmin1, pmin2, . . . , pminN)
and pmax = (pmax1, pmax2, . . . , pmaxN) denote, respectively, the minimum and max-
imum values (domain) of the parameters of any individual.



ImprovedDifferentialEvolutionProcedure() {
G = 0;
initialize xG; // xG: population at generation G
evaluate f (xG); // f (·): evaluate function or �tness
while ( not termination condition ) {

xG+1 = xG;
select a random individual (xk,G) from population xG;
perform the mutation operator {

generate the mutated individuals m1, m2, m3, m4 and m5

by Equations (9)-(13);
the son with the best �tness function is denoted vi,G+1;

}
perform the crossover operator {

generate the crossover individuals c1, c2, c3 and c4

by Equations (14)-(17);
the son with the best �tness function is denoted ui,G+1;

}
perform the selection operator (generating xk,G+1 by Equation (4));
G = G + 1;

}
}

Figure 2. Improved differential evolution procedure.

3.2. Evaluation Process
Each IDE individual should be evaluated by a de�ned �tness function (or cost function).
In this way, better chromosomes in IDE population will have high �tness function values.
Hence, a possible �tness function de�nition is given by

fitness function =
1

1 + |min− f(xS,G)| , (8)

where f(·) is an heuristic function and min denotes the minimum function value. It is
worth to mention that the �tness function is dependent of the application objective [Leung
et al. 2003].

3.3. Proposed Mutation Operator
The proposed mutation generates �ve new individuals (mj, j = 1, . . . , 5), which are de-
�ned by the following equations:

m1 = xr1,G + F (xr2,G − xr3,G), (9)

m2 = xbest,G + F (xr1,G − xr2,G), (10)
m3 = xr1,G + F [(xr2,G − xr3,G) + (xr4,G − xr5,G)], (11)
m4 = xbest,G + F [(xr1,G − xr2,G) + (xr3,G − xr4,G)], (12)
m5 = xk,G + λ(xbest,G − xk,G) + F (xr1,G − xr2,G), (13)



where r1 6= r2 6= r3 6= r4 6= r5 6= k are randomly chosen individuals indexes and best
denotes the best individual index of the current population. Term F ∈ [0, 2] and λ ∈ [0, 2]
are a real-valued number which control the ampli�cation of the difference vectors. These
mutated individuals (Equations (9)-(13)) are used in order to explore the state space of
possible solutions with greater effectiveness, thus preventing the algorithm going to the
local minima of the �tness function surface.

After the generation of the sons through mutation (Equations (9)-(13)), the son
with the best evaluation (greater �tness value) will be chosen as the son generated by the
mutation process and will be denoted by vi,G+1.

3.4. Proposed Crossover Operator
The proposed crossover process to generate the vectors c1, c2, c3 and c4 is done with
the use of four crossover operators, which are de�ned by the following equations (based
on [Leung et al. 2003]):

c1 =
vi,G+1 + xk,G

2
, (14)

c2 = pmax(1− w) + max(vi,G+1, xk,G)w, (15)
c3 = pmin(1− w) + min(vi,G+1, xk,G)w, (16)

c4 =
(pmax + pmin)(1− w) + (vi,G+1 + xk,G)w

2
, (17)

where w ∈ [0, 1] denotes the crossover weight (the closer w is to 1, the greater is the di-
rect contribution from parents), max(vi,G+1, xk,G) and min(vi,G+1, xk,G) denote the vec-
tor whose elements are the maximum and the minimum, respectively, between the gene
values of vi,G+1 and xk,G. The terms pmax and pmin denote the maximum and mini-
mum possible gene values, respectively. In this way, the use of these crossover operators,
produces better offspring over the domain, since c1 and c4 results in searching around the
center region of the domain, and c2 and c3 move the potential offspring to be near the
maximum and minimum, respectively, domain boundary [Leung et al. 2003].

After the generation of the sons through crossover (Equations (14)-(17)), the son
with the best evaluation (greater �tness value) will be chosen as the son generated by the
crossover process and will be denoted by ui,G+1.

3.5. Selection Operator
The selection operator is the same of the Differential Evolution (Section 2.2.3). However,
it is worth to mention that only one individual (xk,G+1) is modi�ed (this factor depends on
the evaluation of the individual ui,G+1), while in the standard DE all the individuals are
modi�ed if its �tness is worse than the individuals generated by the crossover operator.

4. Simulations and Experimental Results
A set of six well-known benchmark problems of single objective optimization are used to
assess performance of the proposed algorithm. The SDE parameters used are: a maximum
number of generations corresponding to 103, population size equals to 100, F = 0.5 and
CR = 0.9. These values are based on values proposed in the literature [Storn and Price
1995,Storn 1999,Ali and Torn 2004,Vesterstroem and Thomsen 2004,Liu and Lampinen
2005, Brest et al. 2006]. The proposed IDE parameters used are: a maximum number of



generations corresponding to 103, population size equals to 10, F = 0.5, λ = 0.95 and
w = 0.9. Also, these values are based on values proposed by [Storn and Price 1995,Storn
1999,Leung et al. 2003]. The feasible solution space depends on the benchmark function
and will be presented later for each used function.

For each benchmark function, a hundred experiments were done, where it was
used, for comparison effect, the mean of convergence results in order to prove graphically
the fastest convergence of the proposed IDE when compared to SDE. The obtained results
suggest that the proposed IDE performance is better (in terms of the �tness function and
the convergence speed) than that of the SDE.

4.1. Benchmark Functions

f1(x) =
N∑

i=1

x2
i , −100 ≤ xi ≤ 100, (18)

where x = (x1, x2, . . . , xN) and N represents the dimension of vector x.

f2(x) = −20exp


−0.2

√√√√ 1

N

N∑
i=1

x2
i




− exp

[
1

N

N∑
i=1

cos(2πxi)

]
+ 20 + exp(1), −32 ≤ xi ≤ 32; (19)

f3(x) =
N∑

i=1

[x2
i − 10cos(2πxi) + 10], −5.12 ≤ xi ≤ 5.12; (20)

f4(x) =
N∑

i=1

(bxi + 0.5c)2, −100 ≤ xi ≤ 100; (21)

f5(x) =
1

4000

N∑
i=1

x2
i −

N∏
i=1

cos

(
xi√

i

)
+ 1, −600 ≤ xi ≤ 600; (22)

f6(x) =
π

N

{
10sin2(πyi) +

N−1∑
i=1

(yi − 1)2[1 + 10sin2(πyi+1)] + (yN − 1)2

}

+
N∑

i=1

u(xi, 10, 100, 4),

yi = 1 +
1

4
(xi + 1),

u(xi, a, k, m) =





k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < a

, −50 ≤ xi ≤ 50. (23)



Table 1. Results for all benchmark functions.
Best Fitness Averaged Fitness (Standard Deviation) Expected

FitnessIDE SDE IDE SDE
f1(x) 5.20e-9 2.32e-8 9.11e-9 (1.17e-9) 1.61e-7 (2.08e-7) 0
f2(x) 6.54e-9 1.06e-4 1.16e-8 (3.52e-9) 3.86e-4 (2.56e-4) 0
f3(x) 0 59.44 0 (0) 80.84 (9.12) 0
f4(x) 0 0 0 (0) 0.22 (0.73) 0
f5(x) 0 2.32e-8 0 (0) 1.54e-7 (5.88e-3) 0
f6(x) 9.08e-12 2.08e-7 3.32e-6 (9.81e-6) 0.06 (0.22) 0

All benchmark functions (f1, f2, f3, f4, f5 and f6) [Brest et al. 2006] use N = 30.
Table 1 shows the obtained results for all benchmark functions for the IDE and SDE.
Figure 3 shows the averaged convergence results for all the benchmark functions.

According to these accomplished computational experiments, it was observed that
the proposed IDE can �nd the optimal or close-to-optimal solutions having small standard
deviations (it means that the proposed IDE have a stable solution quality). Note that the
proposed IDE found the optimal solution in three out of the six tested benchmark func-
tions, while the SDE found the optimal solution just in one of the benchmark functions.
Furthermore, it was observed that the proposed IDE quickly converges, in all the tested
benchmark functions, for the global minimum. Also, it is worth to mention that, accord-
ing to the presented convergence results in Figure 3, it can be seen that the proposed IDE
had fastest convergence speed than the SDE.

Through the comparisons between the IDE and SDE algorithms (in terms of �t-
ness function and convergence speed), it was observed that the proposed mutation and
crossover operators can improve the SDE performance, obtaining more robust solutions
and better convergence stability. Also, it can be seen in the convergence �gures for most
of the tested functions that, the number of generations necessary for the IDE convergence
was no more than two hundred epochs. Additionally, it is observed that with the use of
only ten individuals in the population, the IDE algorithm performed much better (�tness)
and converged much faster (number of generations) than the SDE (using a hundred in-
dividuals in its population), clearly showing the superior performance of the proposed
IDE.

5. Conclusion
In this paper, the Improved Differential Evolution (IDE) has been presented to solve sin-
gle objective optimization problems with continuous variables. The proposed IDE uses
improved DE operators (mutation and crossover) in order to explore with larger effec-
tiveness the search space, as well as to quickly �nd optimal or close-to-optimal solutions,
accelerating its convergence speed and allowing to the IDE to escape with larger effec-
tiveness from local minima in state space, improving the DE drawbacks.

Furthermore, six well-known benchmark problems of single objective optimiza-
tion were used to assess performance of the proposed algorithm. All benchmark problems
had thirty dimensions. Since these benchmark functions has a very large number of local
minima, �nding satisfactory solutions becomes a great challenge. Therefore, according to
the presented results, the proposed IDE converges quickly for the global minimum (had
fastest convergence speed than SDE, as illustrated in the convergence �gures), as well as
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Figure 3. Convergence results of all benchmark functions: (a) f1(x), (b) f2(x), (c)
f3(x), (d) f4(x), (e) f5(x) and (f) f6(x).

obtained better solutions than the SDE.
The accomplished computational experiments show that the proposed IDE can

�nd optimal or close-to-optimal solutions, and it is more more ef�cient than the SDE
on the tested benchmark functions. Future works will consider the development of the
multi-objective IDE.
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